cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001913 Full reptend primes: primes with primitive root 10.

This page as a plain text file.
%I A001913 M4353 N1823 #130 Mar 04 2025 07:34:53
%S A001913 7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,
%T A001913 233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499,503,
%U A001913 509,541,571,577,593,619,647,659,701,709,727,743,811,821,823,857,863,887,937,941,953,971,977,983
%N A001913 Full reptend primes: primes with primitive root 10.
%C A001913 Primes p such that the decimal expansion of 1/p has period p-1, which is the greatest period possible for any integer.
%C A001913 Primes p such that the corresponding entry in A002371 is p-1.
%C A001913 Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
%C A001913 R. K. Guy writes (Oct 20 2004): MR 2004j:11141 speaks of the unearthing by Lenstra & Stevenhagen of correspondence concerning the density of this sequence between the Lehmers & Artin.
%C A001913 Also called long period primes, long primes or maximal period primes.
%C A001913 The base-10 cyclic numbers A180340, (b^(p-1) - 1) / p, with b = 10, are obtained from the full reptend primes p. - _Daniel Forgues_, Dec 17 2012
%C A001913 The number of terms < 10^n: A086018(n). - _Robert G. Wilson v_, Aug 18 2014
%D A001913 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
%D A001913 Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
%D A001913 John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
%D A001913 C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 380.
%D A001913 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
%D A001913 M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
%D A001913 H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), Ch. 19, 'Die periodischen Dezimalbrüche'.
%D A001913 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001913 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001913 Robert Israel, <a href="/A001913/b001913.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A001913 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A001913 B. Chanco, <a href="http://bchanco.free.fr/frp/ArtinIntro.html">Full Reptend Prime</a>
%H A001913 Sebastian M. Cioabă and Werner Linde, <a href="https://bookstore.ams.org/view?ProductCode=AMSTEXT/58">A Bridge to Advanced Mathematics: from Natural to Complex Numbers</a>, Amer. Math. Soc. (2023) Vol. 58, see page 186.
%H A001913 L. J. Goldstein, <a href="http://www.jstor.org/stable/2316895">Density questions in algebraic number theory</a>, Amer. Math. Monthly, 78 (1971), 342-349.
%H A001913 Pieter Moree, <a href="http://turing.wins.uva.nl/~moree/varia.htm">Artin's primitive root conjecture - a survey</a>
%H A001913 Katsuya Mori, <a href="http://math.colgate.edu/~integers/u77/u77.pdf">On a Certain Inverse Problem for Carousel Numbers</a>, INTEGERS 20 (2020), #A77.
%H A001913 OEIS Wiki, <a href="/wiki/Full_reptend_primes">Full reptend primes</a>
%H A001913 Matt Parker and Brady Haran, <a href="https://www.youtube.com/watch?v=DmfxIhmGPP4">The Reciprocals of Primes</a>, Numberphile video (2022)
%H A001913 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclicNumber.html">Cyclic Number.</a>
%H A001913 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DecimalExpansion.html">Decimal Expansion.</a>
%H A001913 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FullReptendPrime.html">Full Reptend Prime.</a>
%H A001913 D. Williams, <a href="http://www.louisville.edu/~dawill03/crypto/Primitive.html">Primitive Roots (Check)</a> [Dead link]
%H A001913 Chai Wah Wu, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.121.06.529">Pigeonholes and repunits</a>, Amer. Math. Monthly, 121 (2014), 529-533.
%H A001913 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%H A001913 <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a>
%e A001913 7 is in the sequence because 1/7 = 0.142857142857... and the period = 7-1 = 6.
%p A001913 A001913 := proc(n) local st, period:
%p A001913 st := ithprime(n):
%p A001913 period := numtheory[order](10,st):
%p A001913 if (st-1 = period) then
%p A001913    RETURN(st):
%p A001913 fi: end:  seq(A001913(n), n=1..200); # _Jani Melik_, Feb 25 2011
%t A001913 pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
%t A001913 (* Second program: *)
%t A001913 Join[{7},Select[Prime[Range[300]],PrimitiveRoot[#,10]==10&]] (* _Harvey P. Dale_, Feb 01 2018 *)
%o A001913 (PARI) forprime(p=7,1e3,if(znorder(Mod(10,p))+1==p,print1(p", "))) \\ _Charles R Greathouse IV_, Feb 27 2011
%o A001913 (PARI) is(n)=Mod(10,n)^(n\2)==-1 && isprime(n) && znorder(Mod(10,n))+1==n \\ _Charles R Greathouse IV_, Oct 24 2013
%o A001913 (Python)
%o A001913 from itertools import count, islice
%o A001913 from sympy import nextprime, n_order
%o A001913 def A001913_gen(startvalue=1): # generator of terms >= startvalue
%o A001913     p = max(startvalue-1,1)
%o A001913     while (p:=nextprime(p)):
%o A001913         if p!=2 and p!=5 and n_order(10,p)==p-1:
%o A001913             yield p
%o A001913 A001913_list = list(islice(A001913_gen(),20)) # _Chai Wah Wu_, Mar 03 2025
%Y A001913 Apart from initial term, identical to A006883.
%Y A001913 Other definitions of cyclic numbers: A003277, A001914, A180340.
%Y A001913 Cf. A005596, A001122, A048296, A051626.
%K A001913 nonn,easy,nice
%O A001913 1,1
%A A001913 _N. J. A. Sloane_