A001916 Primes p such that the congruence 2^x = 5 (mod p) is solvable.
2, 3, 11, 13, 19, 29, 37, 41, 53, 59, 61, 67, 71, 79, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 191, 197, 199, 211, 227, 239, 251, 269, 271, 293, 311, 317, 347, 349, 359, 373, 379, 389, 401, 409, 419, 421, 443, 449, 461, 467, 479, 491, 509, 521, 523, 541, 547, 557
Offset: 1
Keywords
References
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 64.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001915.
Programs
-
Mathematica
Select[Prime[Range[120]], MemberQ[Table[Mod[2^x-5, #], {x, 0, #}], 0]&] (* Jean-François Alcover, Aug 29 2011 *)
Extensions
Better description and more terms from David W. Wilson, Dec 12 2000
Description corrected by Joe K. Crump (joecr(AT)carolina.rr.com), Jan 17 2001