cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001965 u-pile count for the 4-Wythoff game with i=2.

This page as a plain text file.
%I A001965 M2301 N0907 #42 Feb 16 2025 08:32:24
%S A001965 0,1,3,4,5,6,8,9,10,11,12,14,15,16,17,19,20,21,22,24,25,26,27,29,30,
%T A001965 31,32,33,35,36,37,38,40,41,42,43,45,46,47,48,50,51,52,53,55,56,57,58,
%U A001965 59,61,62,63,64,66,67,68,69,71,72,73,74,76,77,78,79,80,82
%N A001965 u-pile count for the 4-Wythoff game with i=2.
%C A001965 See Connell (1959) for further information.
%D A001965 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001965 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001965 T. D. Noe, <a href="/A001965/b001965.txt">Table of n, a(n) for n = 0..10000</a>
%H A001965 Ian G. Connell, <a href="http://dx.doi.org/10.4153/CMB-1959-024-3">A generalization of Wythoff's game</a>, Canad. Math. Bull. 2 (1959) 181-190.
%H A001965 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HofstadterG-Sequence.html">Hofstadter G-Sequence</a>
%F A001965 a(n) = floor( (n+1/2)*(sqrt(5)-1) ). - _R. J. Mathar_, Feb 14 2011
%F A001965 a(n) = A005206(2*n). - _Peter Bala_, Aug 09 2022
%F A001965 a(n) = A001966(n)-4*n-2. - _Chai Wah Wu_, Aug 25 2022
%t A001965 Table[Floor[(n + 1/2)*(Sqrt[5] - 1)], {n, 0, 100}] (* _T. D. Noe_, Aug 17 2012 *)
%o A001965 (Python)
%o A001965 from math import isqrt
%o A001965 def A001965(n): return ((m:=(n<<1)+1)+isqrt(5*m**2)>>1)-m # _Chai Wah Wu_, Aug 25 2022
%Y A001965 Complement of A001966 (the v-pile). Cf. A001961, A005206.
%K A001965 nonn,easy
%O A001965 0,3
%A A001965 _N. J. A. Sloane_
%E A001965 Edited by _Hugo Pfoertner_, Dec 27 2021