cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001974 Numbers that are the sum of 3 distinct squares, i.e., numbers of the form x^2 + y^2 + z^2 with 0 <= x < y < z.

Original entry on oeis.org

5, 10, 13, 14, 17, 20, 21, 25, 26, 29, 30, 34, 35, 37, 38, 40, 41, 42, 45, 46, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 65, 66, 68, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 93, 94, 97, 98, 100, 101, 104, 105, 106, 107, 109, 110, 113
Offset: 1

Views

Author

Keywords

Comments

Also: Numbers which are the sum of two or three distinct nonzero squares. - M. F. Hasler, Feb 03 2013
According to Halter-Koch (below), a number n is a sum of 3 squares, but not a sum of 3 distinct squares (i.e., is in A001974 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1, 2, 3, 6, 9, 11, 18, 19, 22, 27, 33, 43, 51, 57, 67, 99, 102, 123, 163, 177, 187, 267, 627, ?}, where ? denotes at most one unknown number that, if it exists, is > 5*10^10. - Jeffrey Shallit, Jan 15 2017

Examples

			5 = 0^2 + 1^2 + 2^2.
		

Crossrefs

Cf. A004436 (complement).

Programs

  • Mathematica
    r[n_] := Reduce[0 <= x < y < z && x^2 + y^2 + z^2 == n, {x, y, z}, Integers]; ok[n_] := r[n] =!= False; Select[ Range[113], ok] (* Jean-François Alcover, Dec 05 2011 *)
  • Python
    from itertools import combinations
    def aupto(lim):
      s = filter(lambda x: x <= lim, (i*i for i in range(int(lim**.5)+2)))
      s3 = set(filter(lambda x: x<=lim, (sum(c) for c in combinations(s, 3))))
      return sorted(s3)
    print(aupto(113)) # Michael S. Branicky, May 10 2021