A001981 Restricted partitions.
1, 1, 5, 13, 33, 73, 151, 289, 526, 910, 1514, 2430, 3788, 5744, 8512, 12346, 17575, 24591, 33885, 46029, 61731, 81805, 107233, 139143, 178870, 227930, 288100, 361384, 450096, 556834, 684572, 836618, 1016737, 1229093, 1478379, 1769773
Offset: 0
Keywords
Examples
a(3)=13 since partitions of 12 into up to 8 parts each no more than 3 are 3+3+3+3 = 3+3+3+2+1 = 3+3+3+1+1+1 = 3+3+2+2+2 = 3+3+2+2+1+1 = 3+3+2+1+1+1+1 = 3+3+1+1+1+1+1+1 = 3+2+2+2+2+1 = 3+2+2+2+1+1+1 = 3+2+2+1+1+1+1+1 = 2+2+2+2+2+2 = 2+2+2+2+2+1+1 = 2+2+2+2+1+1+1+1; or equivalently partitions of 15 into exactly 3 single-digit numbers are 9+5+1 = 9+4+2 = 9+3+3 = 8+6+1 = 8+5+2 = 8+4+3 = 7+7+1 = 7+6+2 = 7+5+3 = 7+4+4 = 6+6+3 = 6+5+4 =5+5+5.
References
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- Hilbert, D., Theory of algebraic invariants. Lectures. Cambridge University Press, (1993).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Springer, T.A., Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, (1977).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Partition and composition calculator.
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Shalosh B. Ekhad, Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019.
Programs
-
Maple
a:= n-> subs({x=1}, convert(series((product('1-x^i', 'i'=9..8+n)/ product('1-x^k', 'k'=2..n)), x, 4*n+1), polynom)): seq (a(n), n=0..40); # Leonid Bedratyuk, Dec 06 2006
-
Mathematica
a[n_] := Length[IntegerPartitions[4*n, 8, Range[n]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 17 2014 *)
Formula
a(n) =A067059(n, 8) =A067059(8, n) =(1/152409600) * (1812n^7 + 57078n^6 + 748314n^5 + 5278770n^4 + 21727272n^3 + 52982181n^2 + 77609245n + 66220839 + (297675n^2+2679075n+27088425)*(1, -1)pcr(n, 2) + (1254400*n+5644800)*(2, -1, -1)pcr(n, 3) + 9408000*(0, -1, 1)pcr(n, 3) + 4762800*(1, 1, -1, -1)pcr(n, 4) + 24385536*(1, -1, 0, 0, 0)pcr(n, 5) + 6220800(3, -1, 2, -2, 1, -3, 0)pcr(n, 7)) where for example (0, -1, 1)pcr(n, 3) means the value 0 if n mod 3 = 0, the value -1 if n mod 3 = 1 and the value 1 if n mod 3 = 2. - Henry Bottomley, Jul 19 2003
Extensions
Edited by Henry Bottomley, Jul 19 2003
Comments