A002012 Almost trivalent maps.
4, 32, 200, 1120, 5880, 29568, 144144, 686400, 3208920, 14780480, 67251184, 302865472, 1352078000, 5990745600, 26369978400, 115407434880, 502503206040, 2178032472000, 9401840170800, 40434981787200, 173319035569680, 740642835229440, 3156148445580000
Offset: 0
Keywords
References
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- A. M. Mathai and P. N. Rathie, Enumeration of almost cubic maps, Journal of Combinatorial Theory, Series B, Vol 13 (1972), 83-90.
Formula
a(n) = 2*(n+3)*(2*(n+1))! / (3*n!*(n+1)!). [Mathai & Rathie, Eq. (22)] - Andrey Zabolotskiy, Jun 24 2024
Extensions
Terms a(7) and beyond from Andrey Zabolotskiy, Jun 24 2024