This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002022 M4305 N1800 #36 Jul 02 2025 16:01:54 %S A002022 0,6,240,1020,78120,279930,40353600,134217720,31381059600,99999999990, %T A002022 34522712143920,106993205379060,51185893014090744,155568095557812210, %U A002022 98526125335693359360,295147905179352825840,239072435685151324847136 %N A002022 In the pile of coconuts problem, the number of coconuts that remain to be shared equally at the end of the process. %C A002022 See A002021 for further description of the problem. %D A002022 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002022 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002022 T. D. Noe, <a href="/A002022/b002022.txt">Table of n, a(n) for n = 2..100</a> %H A002022 Anonymous, <a href="http://www.f1compiler.com/samples/Sailors%20Monkey%20Coconuts.f1.html">The Monkey and the Coconuts</a> (with FormulaOne program) %H A002022 Santo D'Agostino, <a href="https://fomap.org/2011/05/13/the-coconut-problem/">"The Coconut Problem"; Updated With Solution</a>, May 2011. %H A002022 R. S. Underwood and Robert E. Moritz, <a href="http://www.jstor.org/stable/2298601">Problem 3242</a>, Amer. Math. Monthly, 35 (1928), 47-48. %p A002022 f := proc(n) if n mod 2 = 1 then RETURN((n-1)^n-(n-1)) else RETURN((n-1)^(n+1)-(n-1)) fi; end: %t A002022 Rest[Table[If[OddQ[n],(n-1)^n-(n-1),(n-1)^(n+1)-(n-1)],{n,30}]] (* _Harvey P. Dale_, Oct 21 2011 *) %Y A002022 Cf. A002021, A006091. %K A002022 nonn,easy,nice %O A002022 2,2 %A A002022 _N. J. A. Sloane_ %E A002022 Formula and more terms from _James Sellers_, Feb 10 2000 %E A002022 Detail added to the name by _Peter Munn_, Jun 16 2023