This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002051 M4644 N1986 #61 Jun 24 2020 19:05:01 %S A002051 0,0,1,9,67,525,4651,47229,545707,7087005,102247051,1622631549, %T A002051 28091565547,526858344285,10641342962251,230283190961469, %U A002051 5315654681948587,130370767029070365,3385534663256714251,92801587319328148989,2677687796244383678827,81124824998504072833245,2574844419803190382447051 %N A002051 Steffensen's bracket function [n,2]. %C A002051 a(n) is the number of ways to arrange the blocks of the partitions of {1,2,...,n} in an undirected cycle of length 3 or more, see A000629. - _Geoffrey Critzer_, Nov 23 2012 %C A002051 From _Gus Wiseman_, Jun 24 2020: (Start) %C A002051 Also the number of (1,2)-matching length-n sequences covering an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 9 sequences are: %C A002051 (1,2) (1,1,2) %C A002051 (1,2,1) %C A002051 (1,2,2) %C A002051 (1,2,3) %C A002051 (1,3,2) %C A002051 (2,1,2) %C A002051 (2,1,3) %C A002051 (2,3,1) %C A002051 (3,1,2) %C A002051 Missing from this list are: %C A002051 (1,1) (1,1,1) %C A002051 (2,1) (2,1,1) %C A002051 (2,2,1) %C A002051 (3,2,1) %C A002051 (End) %D A002051 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002051 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A002051 Steffensen, J. F. Interpolation. 2d ed. Chelsea Publishing Co., New York, N. Y., 1950. ix+248 pp. MR0036799 (12,164d) %H A002051 T. D. Noe, <a href="/A002051/b002051.txt">Table of n, a(n) for n = 1..100</a> %H A002051 G. J. Simmons, <a href="/A002050/a002050_2.pdf">Letter to N. J. Sloane, May 29 1974</a> %H A002051 J. F. Steffensen, <a href="http://dx.doi.org/10.1080/03461238.1928.10416863">On a class of polynomials and their application to actuarial problems</a>, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928. %H A002051 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %H A002051 Gus Wiseman, <a href="/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a> %F A002051 [n,2] = Sum_{s=2..n-1} Stirling2(n,s+1)*s!/2 (cf. A241168). %F A002051 a(1)=0; for n >= 2, a(n) = A000670(n-1) - 2^(n-2). - Manfred Goebel (mkgoebel(AT)essex.ac.uk), Feb 20 2000; formula adjusted by _N. J. A. Sloane_, Apr 22 2014. For example, a(5) = 67 = A000670(4)-2^3 = 75-8 = 67. %F A002051 E.g.f.: (1 - exp(2*x) - 2*log(2 - exp(x)))/4 = B(A(x)) where A(x) = exp(x)-1 and B(x) = (log(1/(1-x))- x - x^2/2)/2. - _Geoffrey Critzer_, Nov 23 2012 %e A002051 a(4) = 9. There are 6 partitions of {1,2,3,4} into exactly three blocks and one way to put them in an undirected cycle of length three. There is one partition of {1,2,3,4} into four blocks and 3 ways to make an undirected cycle of length four. 6 + 3 = 9. - _Geoffrey Critzer_, Nov 23 2012 %t A002051 a[n_] := Sum[ k!*StirlingS2[n-1, k], {k, 0, n-1}] - 2^(n-2); Table[a[n], {n, 3, 17}] (* _Jean-François Alcover_, Nov 18 2011, after Manfred Goebel *) %t A002051 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A002051 Table[Length[Select[Join@@Permutations/@allnorm[n],!GreaterEqual@@#&]],{n,0,5}] (* _Gus Wiseman_, Jun 24 2020 *) %o A002051 (PARI) a(n) = sum(s=2, n-1, stirling(n,s+1,2)*s!/2); \\ _Michel Marcus_, Jun 24 2020 %Y A002051 A diagonal of the triangular array in A241168. %Y A002051 (1,2)-avoiding patterns are counted by A011782. %Y A002051 (1,1)-matching patterns are counted by A019472. %Y A002051 (1,2)-matching permutations are counted by A033312. %Y A002051 (1,2)-matching compositions are counted by A056823. %Y A002051 (1,2)-matching permutations of prime indices are counted by A335447. %Y A002051 (1,2)-matching compositions are ranked by A335485. %Y A002051 Patterns are counted by A000670 and ranked by A333217. %Y A002051 Patterns matched by compositions are counted by A335456. %Y A002051 Cf. A056986, A335454, A335465, A335486, A335515. %K A002051 nonn,easy,nice %O A002051 1,4 %A A002051 _N. J. A. Sloane_ %E A002051 Entry revised by _N. J. A. Sloane_, Apr 22 2014