This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002064 M2795 N1125 #195 Jun 24 2025 12:05:30 %S A002064 1,3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377, %T A002064 491521,1048577,2228225,4718593,9961473,20971521,44040193,92274689, %U A002064 192937985,402653185,838860801,1744830465,3623878657,7516192769,15569256449,32212254721,66571993089 %N A002064 Cullen numbers: a(n) = n*2^n + 1. %C A002064 Binomial transform is A084859. Inverse binomial transform is A004277. - _Paul Barry_, Jun 12 2003 %C A002064 Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - _Milan Janjic_, Jan 26 2010 %C A002064 Indices of primes are listed in A005849. - _M. F. Hasler_, Jan 18 2015 %C A002064 Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - _J. M. Bergot_, May 06 2015 %C A002064 Number of divisors of (2^n)^(2^n). - _Gus Wiseman_, May 03 2021 %C A002064 Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - _Amiram Eldar_, Jun 05 2021 %D A002064 G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255. %D A002064 R. K. Guy, Unsolved Problems in Number Theory, B20. %D A002064 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242. %D A002064 W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346. %D A002064 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002064 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002064 T. D. Noe, <a href="/A002064/b002064.txt">Table of n, a(n) for n=0..300</a> %H A002064 Ray Ballinger, <a href="http://web.archive.org/web/20161028015144/http://www.prothsearch.net/cullen.html">Cullen Primes: Definition and Status</a>. %H A002064 Attila Bérczes, István Pink, and Paul Thomas Young, <a href="https://doi.org/10.1016/j.jnt.2024.03.006">Cullen numbers and Woodall numbers in generalized Fibonacci sequences</a>, J. Num. Theor. (2024) Vol. 262, 86-102. %H A002064 Yuri Bilu, Diego Marques, and Alain Togbé, <a href="https://doi.org/10.1016/j.jnt.2018.11.025">Generalized Cullen numbers in linear recurrence sequences</a>, Journal of Number Theory, Vol. 202 (2019), pp. 412-425; <a href="https://arxiv.org/abs/1806.09441">arXiv preprint</a>, arXiv:1806.09441 [math.NT], 2018. %H A002064 Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, <a href="https://arxiv.org/abs/2108.04302">Restricted generating trees for weak orderings</a>, arXiv:2108.04302 [math.CO], 2021. %H A002064 C. K. Caldwell, <a href="https://t5k.org/top20/page.php?id=6">The Top Twenty: Cullen Primes</a>. %H A002064 James Cullen, <a href="https://archive.org/details/educationaltimes58educ/page/534/mode/2up">Question 15897</a>, Educational Times, Vol. 58 (December 1905), p. 534. %H A002064 Orhan Eren and Yüksel Soykan, <a href="https://doi.org/10.9734/ACRI/2023/v23i8611">Gaussian Generalized Woodall Numbers</a>, Arch. Current Res. Int'l (2023) Vol. 23, Iss. 8, Art. No. ACRI.108618, 48-68. See p. 50. %H A002064 Orhan Eren and Yüksel Soykan, <a href="https://doi.org/10.9734/acri/2024/v24i11981">On Dual Hyperbolic Generalized Woodall Numbers</a>, Archives Current Res. Int'l (2024) Vol. 24, Iss. 11, Art. No. ACRI.126420, 398-423. See p. 401. %H A002064 Jon Grantham and Hester Graves, <a href="https://arxiv.org/abs/2009.04052">The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits</a>, arXiv:2009.04052 [math.NT], 2020. %H A002064 José María Grau and Florian Luca, <a href="https://doi.org/10.1090/S0002-9939-2011-10899-2">Cullen numbers with the Lehmer property</a>, Proceedings of the American Mathematical Society, Vol. 140, No. 1 (2012), pp. 129-134; <a href="http://arxiv.org/abs/1103.3578">arXiv preprint</a>, arXiv:1103.3578 [math.NT], Mar 18 2011. %H A002064 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.htm">Factors of Cullen and Woodall numbers</a>. %H A002064 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm">Generalized Cullen and Woodall numbers</a>. %H A002064 Diego Marques, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Marques/marques5r2.html">On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.4. %H A002064 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/">Factorizations of many number sequences</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha118.htm">Cullen numbers (n = 1 to 100)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha119.htm">(n = 101 to 200)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha120.htm">(n = 201 to 300)</a>, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha121.htm">(n = 301 to 323)</a>. %H A002064 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de Séries Génératrices et Quelques Conjectures</a>, Dissertation, Université du Québec à Montréal, 1992. %H A002064 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992. %H A002064 Wacław Sierpiński, <a href="http://matwbn.icm.edu.pl/kstresc.php?tom=42&wyd=10">Elementary Theory of Numbers</a>, Warszawa 1964. %H A002064 Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.2634312">On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers</a>, Politecnico di Torino (Italy, 2019). %H A002064 Amelia Carolina Sparavigna, <a href="https://doi.org/10.18483/ijSci.2044">Composition Operations of Generalized Entropies Applied to the Study of Numbers</a>, International Journal of Sciences, Vol. 8, No. 4 (2019), pp. 87-92. %H A002064 Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.3471358">The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences</a>, Politecnico di Torino, Italy (2019), [math.NT]. %H A002064 Amelia Carolina Sparavigna, <a href="https://doi.org/10.18483/ijSci.2188">Some Groupoids and their Representations by Means of Integer Sequences</a>, International Journal of Sciences, Vol. 8, No. 10 (2019). %H A002064 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CullenNumber.html">Cullen Number</a>. %H A002064 Wikipedia, <a href="http://en.wikipedia.org/wiki/Cullen_prime">Cullen number</a>. %H A002064 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,4). %F A002064 a(n) = 4a(n-1) - 4a(n-2) + 1. - _Paul Barry_, Jun 12 2003 %F A002064 a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - _Gary W. Adamson_, May 16 2007 %F A002064 Row sums of triangle A134081. - _Gary W. Adamson_, Oct 07 2007 %F A002064 Equals row sums of triangle A143038. - _Gary W. Adamson_, Jul 18 2008 %F A002064 Equals row sums of triangle A156708. - _Gary W. Adamson_, Feb 13 2009 %F A002064 G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - _R. J. Mathar_, Nov 16 2007 %F A002064 a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - _Jonathan Vos Post_, Jul 20 2008 %F A002064 a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - _Harvey P. Dale_, Oct 13 2011 %F A002064 a(n) = A036289(n) + 1 = A003261(n) + 2. - _Reinhard Zumkeller_, Mar 16 2013 %F A002064 E.g.f.: 2*x*exp(2*x) + exp(x). - _Robert Israel_, Dec 12 2014 %F A002064 a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - _Michael Somos_, Jul 18 2018 %F A002064 a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - _Ivan N. Ianakiev_, Aug 07 2019 %F A002064 a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - _Gus Wiseman_, May 03 2021 %F A002064 Sum_{n>=0} 1/a(n) = A340841. - _Amiram Eldar_, Jun 05 2021 %e A002064 G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018 %p A002064 A002064:=-(1-2*z+2*z**2)/((z-1)*(-1+2*z)**2); # conjectured by _Simon Plouffe_ in his 1992 dissertation %t A002064 Table[n*2^n+1,{n,0,2*4!}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 25 2010 *) %t A002064 LinearRecurrence[{5,-8,4},{1,3,9},51] (* _Harvey P. Dale_, Oct 13 2011 *) %t A002064 CoefficientList[Series[(1 - 2 x + 2 x^2)/((1 - x) (2 x - 1)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, May 07 2015 *) %o A002064 (PARI) A002064(n)=n*2^n+1 \\ _M. F. Hasler_, Oct 31 2012 %o A002064 (Haskell) %o A002064 a002064 n = n * 2 ^ n + 1 %o A002064 a002064_list = 1 : 3 : (map (+ 1) $ zipWith (-) (tail xs) xs) %o A002064 where xs = map (* 4) a002064_list %o A002064 -- _Reinhard Zumkeller_, Mar 16 2013 %o A002064 (Magma) [n*2^n + 1: n in [0..40]]; // _Vincenzo Librandi_, May 07 2015 %Y A002064 Cf. A005849, A003261, A050914, A130197, A134081, A001787, A143038, A156708, A181527. %Y A002064 Cf. A000325, A186947. %Y A002064 Diagonal k = n + 1 of A046688. %Y A002064 A000005 counts divisors of n. %Y A002064 A000312 = n^n. %Y A002064 A002109 gives hyperfactorials (sigma: A260146, omega: A303281). %Y A002064 A057156 = (2^n)^(2^n). %Y A002064 A062319 counts divisors of n^n. %Y A002064 A173339 lists positions of squares in A062319. %Y A002064 A188385 gives the highest prime exponent in n^n. %Y A002064 A249784 counts divisors of n^n^n. %Y A002064 Cf. A000169, A000272, A036289, A066959, A176029, A340841, A343656. %K A002064 nonn,easy,nice %O A002064 0,2 %A A002064 _N. J. A. Sloane_ %E A002064 Edited by _M. F. Hasler_, Oct 31 2012