This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002077 M3683 N1503 #38 Jul 03 2025 10:55:37 %S A002077 1,0,1,4,46,1322,112519,32267168,34153652752 %N A002077 Number of N-equivalence classes of self-dual threshold functions of exactly n variables. %D A002077 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 10. %D A002077 S. Muroga and I. Toda, Lower bound on the number of threshold functions, IEEE Trans. Electron. Computers, 17 (1968), 805-806. %D A002077 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002077 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002077 Alastair D. King, <a href="/A002080/a002080.pdf">Comments on A002080 and related sequences based on threshold functions</a>, Mar 17 2023. %H A002077 S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971 [Annotated scans of a few pages] %H A002077 S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy] %H A002077 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A002077 A002080(n) = Sum_{k=1..n} a(k)*binomial(n,k). Also A000609(n-1) = Sum_{k=1..n} a(k)*binomial(n,k)*2^k. - Alastair D. King, Mar 17 2023. %Y A002077 Cf. A002078, A002079, A002080. %K A002077 nonn,more %O A002077 1,4 %A A002077 _N. J. A. Sloane_ %E A002077 Better description from Alastair King, Mar 17 2023