This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002079 M0122 N0049 #31 Jun 27 2025 21:17:32 %S A002079 2,1,2,9,96,2690,226360,64646855,68339572672 %N A002079 Number of N-equivalence classes of threshold functions of exactly n variables. %D A002079 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 8. %D A002079 S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. %D A002079 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002079 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002079 Alastair D. King, <a href="/A002080/a002080.pdf">Comments on A002080 and related sequences based on threshold functions</a>, Mar 17 2023. %H A002079 Muroga, Saburo, Iwao Toda, and Satoru Takasu, <a href="/A002079/a002079.pdf">Theory of majority decision elements</a>, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only] %H A002079 S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy] %H A002079 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A002079 A002078(n) = Sum_{k=0..n} a(k)*binomial(n,k). A000609(n) = Sum_{k=0..n} a(k)*binomial(n,k)*2^k. - Alastair D. King, Mar 17 2023. %Y A002079 Cf. A002077, A002078, A002080. %K A002079 nonn,more %O A002079 0,1 %A A002079 _N. J. A. Sloane_ %E A002079 Better description from Alastair King, Mar 17 2023.