This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002080 M1266 N0485 #48 Jun 27 2025 21:18:02 %S A002080 1,2,4,12,81,1684,122921,33207256,34448225389 %N A002080 Number of N-equivalence classes of self-dual threshold functions of n or fewer variables. %D A002080 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214. %D A002080 S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. %D A002080 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002080 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002080 Alastair D. King, <a href="/A002080/a002080.pdf">Comments on A002080 and related sequences based on threshold functions</a>, Mar 17 2023. %H A002080 S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971. [Annotated scans of a few pages] %H A002080 S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy] %H A002080 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A002080 a(n) = Sum_{k=1..n} A002077(k)*binomial(n,k) = (1/2^n)*Sum_{k=1..n} A000609(k-1)*binomial(n,k). - Alastair D. King, Mar 17 2023. %Y A002080 Cf. A000609, A002077, A002078. %K A002080 nonn,more %O A002080 1,2 %A A002080 _N. J. A. Sloane_ %E A002080 Better description and corrected value of a(7) from Alastair King (see link) - _N. J. A. Sloane_, Oct 24 2023