This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002084 M3667 N1493 #50 Oct 15 2023 01:42:57 %S A002084 1,4,36,624,18256,814144,51475776,4381112064,482962852096, %T A002084 66942218896384,11394877025289216,2336793875186479104, %U A002084 568240131312188379136,161669933656307658932224,53204153193639888357113856,20053432927718528320240287744 %N A002084 Sinh(x) / cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!. %C A002084 Gandhi proves that a(n) == 1 (mod 2n+1) if 2n+1 is prime, that a(2n+1) == 4 (mod 10), and that a(2n+2) == 6 (mod 10). - _Charles R Greathouse IV_, Oct 16 2012 %D A002084 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002084 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002084 T. D. Noe, <a href="/A002084/b002084.txt">Table of n, a(n) for n = 0..50</a> %H A002084 J. M. Gandhi, <a href="http://dx.doi.org/10.4153/CMB-1970-059-9">The coefficients of sinh x/ cos x</a>. Canad. Math. Bull. 13 1970 305-310. %H A002084 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>. %F A002084 E.g.f.: sinh(x)/cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!. %F A002084 a(n) = Sum_{k=0..n} binomial(2n+1, 2k+1)*A000364(n-k) = Sum_{k=0..n} A103327(n, k)*A000324(n-k) = Sum_{k=0..n} (-1)^(n-k)*A104033(n, k). - _Philippe Deléham_, Aug 27 2005 %F A002084 a(n) ~ sinh(Pi/2) * 2^(2*n + 3) * (2*n + 1)! / Pi^(2*n+2). - _Vaclav Kotesovec_, Jul 05 2020 %e A002084 x + 2/3*x^3 + 3/10*x^5 + 13/105*x^7 + 163/3240*x^9 + ... %t A002084 With[{nn=30},Take[CoefficientList[Series[Sinh[x]/Cos[x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* _Harvey P. Dale_, Jul 17 2012 *) %o A002084 (Sage) # Generalized algorithm of L. Seidel (1877) %o A002084 def A002084_list(n) : %o A002084 R = []; A = {-1:0, 0:0} %o A002084 k = 0; e = 1 %o A002084 for i in range(2*n) : %o A002084 Am = 1 if e == -1 else 0 %o A002084 A[k + e] = 0 %o A002084 e = -e %o A002084 for j in (0..i) : %o A002084 Am += A[k] %o A002084 A[k] = Am %o A002084 k += e %o A002084 if e == 1 : R.append(A[i//2]) %o A002084 return R %o A002084 A002084_list(10) # _Peter Luschny_, Jun 02 2012 %o A002084 (PARI) a(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);sum(g=1,n,binomial(2*n-1,2*g-2)*v[g]) \\ _Charles R Greathouse IV_, Oct 16 2012 %o A002084 (PARI) list(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);vector(n,k,sum(g=1,k,binomial(2*k-1,2*g-2)*v[g])) \\ _Charles R Greathouse IV_, Oct 16 2012 %Y A002084 Cf. A002085. %K A002084 nonn,easy %O A002084 0,2 %A A002084 _N. J. A. Sloane_ %E A002084 a(13)-a(15) from _Andrew Howroyd_, Feb 05 2018