This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002121 M0023 N0005 #26 Oct 14 2023 22:35:18 %S A002121 1,0,-1,1,1,-1,0,2,0,-2,2,4,-3,-2,8,1,-8,8,12,-11,-4,25,4,-24,21,40, %T A002121 -31,-16,82,14,-81,71,131,-99,-48,258,46,-249,223,422,-303,-162,825, %U A002121 169,-791,714,1360,-955,-503,2641,573,-2479,2263,4365,-2941,-1592,8436,1978,-7830,7212,14083,-9133,-4992,26970,6688,-24590 %N A002121 a(0) = 1, a(1) = 0, a(2) = -1; for n >= 3, a(n) = - a(n-2) + Sum_{ primes p with 3 <= p <= n} a(n-p). %C A002121 Arises in studying the Goldbach conjecture. %C A002121 The last negative term appears to be a(303). - _T. D. Noe_, Dec 05 2006 %D A002121 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002121 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002121 T. D. Noe, <a href="/A002121/b002121.txt">Table of n, a(n) for n = 0..1000</a> %H A002121 P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-23.1.290">Properties of prime numbers deduced from the calculus of symmetric functions</a>, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. [The sequence g_n] %H A002121 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %F A002121 G.f.: 1/(1+Sum_{k>0} (-x)^prime(k)). - _Vladeta Jovovic_, Mar 29 2003 %t A002121 CoefficientList[Series[1/(1+Sum[(-x)^Prime[k],{k,20}]),{x,0,70}],x] (* _Harvey P. Dale_, Aug 26 2020 *) %o A002121 (Haskell) %o A002121 import Data.List (genericIndex) %o A002121 a002121 n = genericIndex a002121_list n %o A002121 a002121_list = 1 : 0 : -1 : f 0 (-1) 3 where %o A002121 f v w x = y : f w y (x + 1) where %o A002121 y = sum (map (a002121 . (x -)) $ takeWhile (<= x) a065091_list) - v %o A002121 -- _Reinhard Zumkeller_, Mar 21 2014 %Y A002121 Cf. A002100-A002125. %Y A002121 Cf. A065091. %K A002121 sign,easy,look %O A002121 0,8 %A A002121 _N. J. A. Sloane_ %E A002121 More terms from _Vladeta Jovovic_, Mar 29 2003 %E A002121 Entry revised by _N. J. A. Sloane_, Dec 04 2006