This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002122 M0273 N0096 #25 Oct 14 2023 22:35:57 %S A002122 1,0,-2,2,3,-4,-1,8,-1,-10,9,16,-18,-12,42,4,-58,40,82,-88,-54,188,18, %T A002122 -248,151,354,-338,-260,760,120,-1031,574,1460,-1324,-1076,2948,542, %U A002122 -3962,2075,5644,-4868,-4290,11035,2418,-14900,7346,21300,-17652,-16323,40442,9768,-54476,25675,78290,-62456 %N A002122 a(n) = Sum_{t=0..n} g(t)*g(n-t) where g(t) = A002121(t). %C A002122 Arises in studying the Goldbach conjecture. %C A002122 The last negative term appears to be a(485). - _T. D. Noe_, Dec 05 2006 %D A002122 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002122 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002122 T. D. Noe, <a href="/A002122/b002122.txt">Table of n, a(n) for n = 0..1000</a> %H A002122 P. A. MacMahon, <a href="https://academic.oup.com/plms/article-abstract/s2-23/1/290/1504148">Properties of prime numbers deduced from the calculus of symmetric functions</a>, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. [The sequence G_n] %H A002122 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %F A002122 G.f.: 1/(1+Sum_{k>0} (-x)^prime(k))^2. %o A002122 (Haskell) %o A002122 a002122 n = a002122_list !! n %o A002122 a002122_list = uncurry conv $ splitAt 1 a002121_list where %o A002122 conv xs (z:zs) = sum (zipWith (*) xs $ reverse xs) : conv (z:xs) zs %o A002122 -- _Reinhard Zumkeller_, Mar 21 2014 %Y A002122 Cf. A002121. %K A002122 sign %O A002122 0,3 %A A002122 _N. J. A. Sloane_ %E A002122 Edited by _Vladeta Jovovic_, Mar 29 2003 %E A002122 Entry revised by _N. J. A. Sloane_, Dec 04 2006