This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002124 M0154 N0062 #47 Apr 13 2022 13:25:16 %S A002124 1,0,0,1,0,1,1,1,2,1,3,4,3,7,7,8,14,15,21,28,33,47,58,76,103,125,169, %T A002124 220,277,373,476,616,810,1037,1361,1763,2279,2984,3846,5006,6521,8428, %U A002124 10983,14249,18480,24048,31178,40520,52635,68281,88765,115211,149593,194381,252280,327696,425587,552527,717721 %N A002124 Number of compositions of n into a sum of odd primes. %C A002124 Arises in studying the Goldbach conjecture. %C A002124 The g.f. -(z-1)*(z+1)*(z**2+z+1)*(z**2-z+1)/(1-z**6-z**3-z**5-z**7+z**9) conjectured by _Simon Plouffe_ in his 1992 dissertation is wrong. %D A002124 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002124 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002124 N. J. A. Sloane, <a href="/A002124/b002124.txt">Table of n, a(n) for n = 0..1000</a> %H A002124 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 300 %H A002124 P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-23.1.290">Properties of prime numbers deduced from the calculus of symmetric functions</a>, Proc. London Math. Soc., 23 (1923), 290-316. [Coll. Papers, II, pp. 354-382] [The sequence i_n] %H A002124 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A002124 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A002124 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %F A002124 a(0)=1, a(1)=a(2)=0; for n >= 3, a(n) = Sum_{ primes p with 3 <= p <= n} a(n-p). [MacMahon] %F A002124 G.f.: 1/( 1 - Sum_{k>=2} x^A000040(k) ). [_Joerg Arndt_, Sep 30 2012] %p A002124 A002124 := proc(n) coeff(series(1/(1-add(z^numtheory[ithprime](j),j=2..n)),z=0,n+1),z,n) end; %p A002124 M:=120; a:=array(0..M); a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to M do t1:=0; for k from 2 to n do p := ithprime(k); if p <= n then t1 := t1 + a[n-p]; fi; od: a[n]:=t1; od: [seq(a[n],n=0..M)]; # _N. J. A. Sloane_, after MacMahon, Dec 03 2006; used in A002125 %t A002124 a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = (s = 0; p = 3; While[p <= n, s = s + a[n-p]; p = NextPrime[p]]; s); a /@ Range[0, 58] (* _Jean-François Alcover_, Jun 28 2011, after P. A. MacMahon *) %o A002124 (Haskell) %o A002124 import Data.List (genericIndex) %o A002124 a002124 n = genericIndex a002124_list n %o A002124 a002124_list = 1 : f 1 [] a065091_list where %o A002124 f x qs ps'@(p:ps) %o A002124 | p <= x = f x (p:qs) ps %o A002124 | otherwise = sum (map (a002124 . (x -)) qs) : f (x + 1) qs ps' %o A002124 -- _Reinhard Zumkeller_, Mar 21 2014 %Y A002124 Cf. A002125, A023360, A024939, A077608. %Y A002124 Cf. A065091. %K A002124 nonn %O A002124 0,9 %A A002124 _N. J. A. Sloane_ %E A002124 Better description and more terms from _Philippe Flajolet_, Nov 11 2002 %E A002124 Edited by _N. J. A. Sloane_, Dec 03 2006