This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002126 M0202 N0075 #25 Mar 09 2020 20:19:12 %S A002126 1,0,2,2,1,4,1,4,2,2,3,2,2,4,3,2,4,2,4,4,4,2,5,2,6,2,5,0,4,2,6,4,4,2, %T A002126 7,0,8,2,3,2,6,2,8,4,6,2,7,2,10,2,8,0,6,2,10,2,6,0,7,2,12,4,5,2,10,0, %U A002126 12,2,4,2,10,2,12,4,9,2,10,0,14,2,8,2,9,2,16,2,9,0,8,2,18,2,8,0,9,0,14 %N A002126 Number of solutions to n=p+q where p and q are primes or zero. %C A002126 Arises in studying the Goldbach conjecture. %D A002126 P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. [Coll. Papers, Vol. II, pp. 354-382] [The sequence N_{n,2}] %D A002126 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002126 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002126 T. D. Noe, <a href="/A002126/b002126.txt">Table of n, a(n) for n = 0..10000</a> %H A002126 P. A. MacMahon, <a href="http://plms.oxfordjournals.org/content/s2-23/1/290.extract">Properties of prime numbers deduced from the calculus of symmetric functions</a>, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. %F A002126 G.f.: (1 + Sum_i x^prime(i))^2. [Corrected by _T. D. Noe_, Dec 05 2006] %o A002126 (PARI) (a(n) = sum(k=0, n, zp(k)*zp(n-k))); {zp(n) = if( n==0, 1, isprime(n))}; /* _Michael Somos_, Jul 26 1999 */ %Y A002126 Cf. A002375, A045917, A061358, A073610 %K A002126 nonn %O A002126 0,3 %A A002126 _N. J. A. Sloane_ %E A002126 a(54) corrected by _Paul Zimmermann_, Mar 15 1996 %E A002126 Better description from _Michael Somos_, Jul 26 1999