A002136 Matrices with 2 rows.
1, 2, 6, 23, 109, 618, 4096, 31133, 267219, 2557502, 27011734, 312115953, 3916844779, 53053052462, 771450742596, 11986779006647, 198204672604489, 3475110017769282, 64396888392712366, 1257612452945760503, 25815617698822423341, 555708180579477963962, 12517189538209383465496
Offset: 3
Keywords
Examples
For n = 3, the a(3) = 6 ways to partition the deck {1, 1, 2, 2, 3, 4} into three pairs are {11, 22, 34}, {12, 12, 34}, {13, 14, 22}, {11, 23, 24}, {12, 13, 24} and {12, 14, 23}. - _Joel B. Lewis_, Sep 30 2012
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Cerkan, Table of n, a(n) for n = 3..450
- Art of Problem Solving, Partitioning a deck with 2 cards in n types into pairs
- P. A. MacMahon, Combinations derived from m identical sets of n different letters and their connexion with general magic squares, Proc. London Math. Soc., 17 (1917), 25-41.
Programs
-
PARI
/* b(n) := A002135(n) */ b(n) = if(n<3, [1,1,2][n+1], n*b(n-1) - (n-1)*(n-2)*b(n-3)/2 ); c(n) = if(n<3, [1,2][n], b(n-1) + (n-1)*b(n-2) + (n-1)*(n-2)*c(n-2) ); a(n) = c(n-2); /* Joerg Arndt, Apr 07 2013 */
Formula
a(n) ~ 2^(3/2) * n^(n-2) / exp(n-3/4). - Vaclav Kotesovec, Apr 27 2015
Extensions
Added more terms, Joerg Arndt, Apr 07 2013
Comments