This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002146 M4377 N1841 #32 Aug 06 2022 07:17:22 %S A002146 7,23,47,71,199,167,191,239,383,311,431,647,479,983,887,719,839,1031, %T A002146 1487,1439,1151,1847,1319,3023,1511,1559,2711,4463,2591,2399,3863, %U A002146 2351,3527,3719 %N A002146 Smallest prime == 7 (mod 8) where Q(sqrt(-p)) has class number 2n+1. %C A002146 Conjecture: a(n) < A002148(n) for all n >= 1. - _Jianing Song_, Jul 20 2022 %D A002146 D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241. %D A002146 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002146 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002146 David Broadhurst and T. D. Noe, <a href="/A002146/b002146.txt">Table of n, a(n) for n = 0..28603</a> %H A002146 D. Shanks, <a href="https://doi.org/10.1090/S0025-5718-70-99853-4">Review of R. B. Lakein and S. Kuroda, Tables of class numbers h(-p) for fields Q(sqrt(-p)), p <= 465071</a>, Math. Comp., 24 (1970), 491-492. %o A002146 (PARI) a(n) = forprime(p=2, oo, if ((p % 8) == 7, if (qfbclassno(-p) == 2*n+1, return(p)))); \\ _Michel Marcus_, Jul 20 2022 %Y A002146 Cf. A002147, A002148, A060651, A002143 (class numbers). %K A002146 nonn %O A002146 0,1 %A A002146 _N. J. A. Sloane_, _Mira Bernstein_