This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002150 M2391 N0949 #35 Oct 14 2023 17:21:55 %S A002150 1,3,5,6,8,9,10,12,14,16,17,24,27,31,32,33,34,36,37,41,42,46,52,62,64, %T A002150 68,69,70,73,77,78,80,82,86,88,90,92,96,97,98,99,103,105,108,111,113, %U A002150 114,117,119,122,125,132,133,134,136,141,142,144,145,149,154,156,158,160 %N A002150 Numbers k for which the rank of the elliptic curve y^2 = x^3 - k is 0. %D A002150 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002150 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002150 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25. %o A002150 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -k]))[1]==0, print1(k", "))) \\ _Seiichi Manyama_, Jul 06 2019 %o A002150 (Magma) for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,-k])) eq 0 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019 %Y A002150 Cf. A002152 (rank 1), A002154 (rank 2), A179136 (rank 3), A179137 (rank 4). %Y A002150 Cf. A060951. %K A002150 nonn %O A002150 1,2 %A A002150 _N. J. A. Sloane_ %E A002150 Better definition from _Artur Jasinski_, Jun 30 2010 %E A002150 More terms added by _Seiichi Manyama_, Jul 06 2019