This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002152 M1065 N0401 #32 Oct 14 2023 23:51:22 %S A002152 2,4,7,13,15,18,19,20,21,22,23,25,28,29,30,35,38,40,43,44,45,48,49,50, %T A002152 51,54,55,56,57,58,59,60,63,65,66,71,72,74,75,79,81,84,85,87,91,93,94, %U A002152 95,100,101,102,107,110,112,115,120,123,124,126,127,128,129,130,131,135,137 %N A002152 Numbers k for which the rank of the elliptic curve y^2 = x^3 - k is 1. %D A002152 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002152 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002152 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="https://doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25. %o A002152 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -k]))[1]==1, print1(k", "))) \\ _Seiichi Manyama_, Jul 06 2019 %o A002152 (Magma) for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,-k])) eq 1 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019 %K A002152 nonn %O A002152 1,1 %A A002152 _N. J. A. Sloane_ %E A002152 Better definition from _Artur Jasinski_, Jun 30 2010 %E A002152 More terms added by _Seiichi Manyama_, Jul 06 2019