This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002155 M4957 N2125 #35 Jul 06 2024 12:02:28 %S A002155 15,17,24,37,43,57,63,65,73,79,89,101,106,122,129,131,142,145,148,151, %T A002155 161,164,168,171,186,195,197,198,204,217,222,223,225,229,232,233,248, %U A002155 252,260,265,268,269,281,294,295,297,303,322,331,337,347,350,353,360,366,369,373,377,381,388,389,392,404,409,412,414,433,449,464,469,481,483,485,492 %N A002155 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 2. %D A002155 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002155 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002155 T. D. Noe, <a href="/A002155/b002155.txt">Table of n, a(n) for n = 1..1724</a> (using Gebel) %H A002155 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25. %H A002155 J. Gebel, <a href="https://web.archive.org/web/20160825170558/http://tnt.math.se.tmu.ac.jp/simath/MORDELL/MORDELL+">Integer points on Mordell curves</a>, web.archive.org copy of the "MORDELL+" file on the SIMATH web site shut down in 2017. <a href="/A001014/a001014_2.txt">[Locally cached copy]</a>. %H A002155 L. Lehman, <a href="http://people.umw.edu/~llehman/ranktwo.htm">Elliptic Curves of Rank Two</a>. [broken link] %H A002155 H. Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/ec/eca1/ec01rp.txt">Tables of Elliptic Curves</a>. %o A002155 (Magma) for k in[1..500] do if Rank(EllipticCurve([0,0,0,0,k])) eq 2 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019 %Y A002155 Cf. A060950, A002151, A002153, A102833, A060748, A060838, A060951-A060953. %K A002155 nonn %O A002155 1,1 %A A002155 _N. J. A. Sloane_ %E A002155 More terms from _James R. Buddenhagen_, Feb 18 2005