This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002156 M2345 N0926 #34 Oct 14 2023 15:58:38 %S A002156 1,3,4,8,9,11,13,16,18,19,24,27,28,29,33,35,40,43,44,48,51,59,61,63, %T A002156 64,67,68,75,81,83,88,91,92,93,98,100,104,107,108,109,113,115,120,121, %U A002156 123,125,126,128,129,131,139,144,152,153,157,163,164,168,172,173,176,177,179,180,187,189,193,195,198,200 %N A002156 Numbers k for which the rank of the elliptic curve y^2 = x^3 - k*x is 0. %D A002156 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002156 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002156 Vincenzo Librandi, <a href="/A002156/b002156.txt">Table of n, a(n) for n = 1..1730</a> %H A002156 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25. %H A002156 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="https://eudml.org/doc/150565">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25 (open access). %o A002156 (Magma) for k in[1..200] do if Rank(EllipticCurve([0,0,0,-k,0])) eq 0 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019 %o A002156 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==0, print1(k", "))) \\ _Seiichi Manyama_, Jul 07 2019 %Y A002156 Cf. A060952. %K A002156 nonn %O A002156 1,2 %A A002156 _N. J. A. Sloane_ %E A002156 Corrected and extended by _Vaclav Kotesovec_, Jul 07 2019 %E A002156 New name by _Vaclav Kotesovec_, Jul 07 2019