This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002159 M2429 N0962 #32 Oct 14 2023 16:01:22 %S A002159 3,5,8,9,13,15,18,19,20,21,24,28,29,31,35,37,40,47,48,49,51,53,56,60, %T A002159 61,67,69,77,79,80,83,84,85,88,90,92,93,95,98,100,101,104,109,111,115, %U A002159 120,121,124,125,126,127,128,131,133,136,141,143,144,148,149,152,153,156 %N A002159 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 1. %C A002159 Terms 80 and 128 are missing in the article by Birch and Swinnerton-Dyer, page 25, table 4b. - _Vaclav Kotesovec_, Jul 07 2019 %D A002159 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002159 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002159 Vincenzo Librandi, <a href="/A002159/b002159.txt">Table of n, a(n) for n = 1..2040</a> %H A002159 B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="https://eudml.org/doc/150565">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25. %o A002159 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==1, print1(k", "))) \\ _Seiichi Manyama_, Jul 07 2019 %o A002159 (Magma) for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 1 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019 %Y A002159 Cf. A060953, A076329. %K A002159 nonn %O A002159 1,1 %A A002159 _N. J. A. Sloane_ %E A002159 More terms added by _Seiichi Manyama_, Jul 07 2019