cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002220 a(n) is the number of partitions of 3n that can be obtained by adding together three (not necessarily distinct) partitions of n.

This page as a plain text file.
%I A002220 M3395 N1374 #43 Apr 21 2024 23:50:54
%S A002220 1,4,10,30,65,173,343,778,1518,3088,5609,10959,18990,34441,58903,
%T A002220 102044,167499,282519,451529,737208,1160102,1836910,2828466,4410990,
%U A002220 6670202,10161240,15186315,22758131,33480869
%N A002220 a(n) is the number of partitions of 3n that can be obtained by adding together three (not necessarily distinct) partitions of n.
%D A002220 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002220 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002220 N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376.
%e A002220 From _Gus Wiseman_, Apr 20 2024: (Start)
%e A002220 The a(1) = 1 through a(3) = 10 triquanimous partitions:
%e A002220   (111)  (222)     (333)
%e A002220          (2211)    (3321)
%e A002220          (21111)   (32211)
%e A002220          (111111)  (33111)
%e A002220                    (222111)
%e A002220                    (321111)
%e A002220                    (2211111)
%e A002220                    (3111111)
%e A002220                    (21111111)
%e A002220                    (111111111)
%e A002220 (End)
%Y A002220 See A002219 for further details. Cf. A002221, A002222, A213074.
%Y A002220 A column of A213086.
%Y A002220 For biquanimous we have A002219, ranks A357976.
%Y A002220 For non-biquanimous we have A371795, ranks A371731, even case A006827.
%Y A002220 The Heinz numbers of these partitions are given by A371955.
%Y A002220 The strict case is A372122.
%Y A002220 A321451 counts non-quanimous partitions, ranks A321453.
%Y A002220 A321452 counts quanimous partitions, ranks A321454.
%Y A002220 A371783 counts k-quanimous partitions.
%Y A002220 Cf. A035470, A064914, A237258, A321142, A371737, A371792, A371796.
%K A002220 nonn
%O A002220 1,2
%A A002220 _N. J. A. Sloane_
%E A002220 Edited by _N. J. A. Sloane_, Jun 03 2012
%E A002220 a(12)-a(20) from _Alois P. Heinz_, Jul 10 2012
%E A002220 a(21)-a(29) from _Sean A. Irvine_, Sep 05 2013