This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002220 M3395 N1374 #43 Apr 21 2024 23:50:54 %S A002220 1,4,10,30,65,173,343,778,1518,3088,5609,10959,18990,34441,58903, %T A002220 102044,167499,282519,451529,737208,1160102,1836910,2828466,4410990, %U A002220 6670202,10161240,15186315,22758131,33480869 %N A002220 a(n) is the number of partitions of 3n that can be obtained by adding together three (not necessarily distinct) partitions of n. %D A002220 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002220 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002220 N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376. %e A002220 From _Gus Wiseman_, Apr 20 2024: (Start) %e A002220 The a(1) = 1 through a(3) = 10 triquanimous partitions: %e A002220 (111) (222) (333) %e A002220 (2211) (3321) %e A002220 (21111) (32211) %e A002220 (111111) (33111) %e A002220 (222111) %e A002220 (321111) %e A002220 (2211111) %e A002220 (3111111) %e A002220 (21111111) %e A002220 (111111111) %e A002220 (End) %Y A002220 See A002219 for further details. Cf. A002221, A002222, A213074. %Y A002220 A column of A213086. %Y A002220 For biquanimous we have A002219, ranks A357976. %Y A002220 For non-biquanimous we have A371795, ranks A371731, even case A006827. %Y A002220 The Heinz numbers of these partitions are given by A371955. %Y A002220 The strict case is A372122. %Y A002220 A321451 counts non-quanimous partitions, ranks A321453. %Y A002220 A321452 counts quanimous partitions, ranks A321454. %Y A002220 A371783 counts k-quanimous partitions. %Y A002220 Cf. A035470, A064914, A237258, A321142, A371737, A371792, A371796. %K A002220 nonn %O A002220 1,2 %A A002220 _N. J. A. Sloane_ %E A002220 Edited by _N. J. A. Sloane_, Jun 03 2012 %E A002220 a(12)-a(20) from _Alois P. Heinz_, Jul 10 2012 %E A002220 a(21)-a(29) from _Sean A. Irvine_, Sep 05 2013