This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002223 M4382 N1843 #25 Oct 19 2017 03:13:42 %S A002223 7,23,71,311,479,1559,5711,10559,18191,31391,366791,366791,366791, %T A002223 4080359,12537719,30706079,36415991,82636319,120293879,120293879, %U A002223 131486759,131486759,2929911599,2929911599,7979490791,33857579279 %N A002223 Smallest prime p of form p = 8k-1 such that first n primes (p_1=2, ..., p_n) are quadratic residues mod p. %D A002223 N. D. Bronson and D. A. Buell, Congruential sieves on FPGA computers, pp. 547-551 of Mathematics of Computation 1943-1993 (Vancouver, 1993), Proc. Symp. Appl. Math., Vol. 48, Amer. Math. Soc. 1994. %D A002223 D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451. %D A002223 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002223 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A002223 A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XV. %H A002223 A. E. Western and J. C. P. Miller, <a href="/A002223/a002223.pdf">Tables of Indices and Primitive Roots</a>, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages] %e A002223 12^2 = 2 mod 71, 28^2 = 3 mod 71, 17^2 = 5 mod 71. %t A002223 np[] := While[p = NextPrime[p]; Mod[p, 8] != 7]; p = 2; A002223 = {}; pp = {2}; np[]; While[ Length[A002223] < 26, If[Union[ JacobiSymbol[#, p] &[pp]] === {1}, AppendTo[pp, NextPrime[Last[pp]]]; Print[p]; AppendTo[A002223, p], np[]]]; A002223 (* _Jean-François Alcover_, Sep 09 2011 *) %Y A002223 Cf. A045535, A002224, A002225. %K A002223 nonn,easy,nice %O A002223 1,1 %A A002223 _N. J. A. Sloane_ %E A002223 The Bronson-Buell reference gives terms through 227. %E A002223 More terms from _Don Reble_, Sep 19 2001