A002225 a(n) is the smallest prime p such that each of the first n primes has three cube roots mod p.
31, 307, 643, 5113, 21787, 39199, 360007, 360007, 4775569, 10318249, 10318249, 65139031, 387453811, 913900417, 2278522747, 2741702809, 25147657981, 118748663779, 156776294593, 747206701687, 1151810360731, 1151810360731, 1151810360731
Offset: 1
Examples
For n = 2, the first two primes 2 and 3 each have three cube roots mod 307: 2 has cube roots 52, 270, 292 and 3 has cube roots 192, 194, 228. - _Robert Israel_, Aug 02 2016
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XVI.
Links
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
Crossrefs
Programs
-
Maple
Primes:= [2]: pp:= 7: for n from 1 to 12 do for p from pp by 6 while not(isprime(p) and andmap(t -> t &^ ((p-1)/3) mod p = 1, Primes)) do od: A[n]:= p; pp:= p; Primes:= [op(Primes), nextprime(Primes[-1])]; od: seq(A[i],i=1..12); # Robert Israel, Aug 02 2016
-
Mathematica
(* This naive program being very slow, limit is set to 8 terms *) lim=8; np[] := While[p=NextPrime[p]; Mod[p,3]!=1]; crQ[n_, p_] := Reduce[ 0
A002225={}; While[Length[A002225] < lim, If[And @@ (crQ[#,p]& /@ pp), AppendTo[pp, NextPrime[ Last[pp]]]; Print[p]; AppendTo[A002225,p], np[] ] ]; A002225 (* Jean-François Alcover, Sep 09 2011 *)
Extensions
More terms from Don Reble, Oct 09 2001
Name corrected by Robert Israel, Aug 02 2016
a(18)-a(23) from Sergey Paramonov, Apr 11 2024
Comments