This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002229 M0620 N0226 #40 Feb 13 2023 11:16:12 %S A002229 1,2,3,5,6,7,19,21,23,31,37,38,44,69,73,94,97,101,107,111,113,127,137, %T A002229 151,164,179,194,197,227,229,263,281,293,335,347,359,401,417 %N A002229 Primitive roots that go with the primes in A002230. %D A002229 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002229 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A002229 A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV. %H A002229 R. K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988. %H A002229 Kevin J. McGown and Jonathan P. Sorenson, <a href="https://arxiv.org/abs/2206.14193">Computation of the least primitive root</a>, arXiv:2206.14193 [math.NT], 2022. %H A002229 A. E. Western and J. C. P. Miller, <a href="/A002223/a002223.pdf">Tables of Indices and Primitive Roots</a>, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages] %t A002229 s = {1}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[r]; AppendTo[s, r]; rm = r], {k, 10^6}]; s (* _Jean-François Alcover_, Apr 05 2011 *) %o A002229 (Python) %o A002229 from sympy import isprime, primitive_root %o A002229 from itertools import count, islice %o A002229 def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r %o A002229 def agen(r=0): yield from ((m, r:=f(m))[1] for m in count(1) if f(m) > r) %o A002229 print(list(islice(agen(), 15))) # _Michael S. Branicky_, Feb 13 2023 %Y A002229 Cf. A002230. %K A002229 nonn,more %O A002229 1,2 %A A002229 _N. J. A. Sloane_ %E A002229 More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu) %E A002229 a(35)-a(38), from McGown and Sorenson, added by _Michel Marcus_, Jun 29 2022