cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002230 Primes with record values of the least positive primitive root.

This page as a plain text file.
%I A002230 M0855 N0325 #50 Feb 13 2023 12:11:34
%S A002230 2,3,7,23,41,71,191,409,2161,5881,36721,55441,71761,110881,760321,
%T A002230 5109721,17551561,29418841,33358081,45024841,90441961,184254841,
%U A002230 324013369,831143041,1685283601,6064561441,7111268641,9470788801,28725635761,108709927561,386681163961,1990614824641,44384069747161,89637484042681
%N A002230 Primes with record values of the least positive primitive root.
%D A002230 R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
%D A002230 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002230 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002230 A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.
%H A002230 Michel Marcus, <a href="/A002230/b002230.txt">Table of n, a(n) for n = 1..38</a> (using McGown and Sorenson).
%H A002230 Stephen D. Cohen, Tomás Oliveira e Silva, and Tim Trudgian, <a href="http://arxiv.org/abs/1503.04519">On Grosswald's conjecture on primitive roots</a>, arXiv:1503.04519 [math.NT], 2015.
%H A002230 R. K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988.
%H A002230 Kevin J. McGown and Jonathan P. Sorenson, <a href="https://arxiv.org/abs/2206.14193">Computation of the least primitive root</a>, arXiv:2206.14193 [math.NT], 2022.
%H A002230 Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/p-roots.html#avg">Least prime primitive root of prime numbers</a>
%H A002230 A. E. Western and J. C. P. Miller, <a href="/A002223/a002223.pdf">Tables of Indices and Primitive Roots</a>, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
%H A002230 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%t A002230 s = {2}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[p]; AppendTo[s, p]; rm = r], {k, 10^6}]; s (* _Jean-François Alcover_, Apr 05 2011 *)
%t A002230 DeleteDuplicates[Table[{p,PrimitiveRoot[p,1]},{p,Prime[Range[61100]]}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* The program generates the first 15 terms of the sequence. *) (* _Harvey P. Dale_, Aug 22 2022 *)
%o A002230 (Python)
%o A002230 from sympy import isprime, primitive_root
%o A002230 from itertools import count, islice
%o A002230 def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r
%o A002230 def agen(r=0): yield from ((m, r:=f(m))[0] for m in count(1) if f(m) > r)
%o A002230 print(list(islice(agen(), 15))) # _Michael S. Branicky_, Feb 13 2023
%Y A002230 Cf. A002229 (for the primitive roots in question).
%Y A002230 Records in A023048, indices in A114885.
%K A002230 nonn,easy,nice
%O A002230 1,1
%A A002230 _N. J. A. Sloane_
%E A002230 More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)