cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002332 Numbers x such that p = x^2 + 2y^2, with prime p = A033203(n).

Original entry on oeis.org

0, 1, 3, 3, 1, 3, 5, 3, 7, 1, 9, 9, 5, 3, 9, 9, 3, 11, 1, 9, 11, 7, 15, 15, 13, 3, 15, 9, 11, 17, 5, 13, 7, 3, 15, 19, 3, 11, 9, 19, 21, 21, 13, 15, 21, 7, 3, 19, 23, 15, 21, 11, 17, 3, 9, 23, 15, 13, 21, 25, 9, 5, 21, 23, 17, 27, 11, 25, 3, 19, 27, 27, 29, 9, 1, 5, 27, 17, 15, 21, 27
Offset: 1

Views

Author

Keywords

Comments

For p>2, x and y are uniquely determined [Frei, Th. 3]. - N. J. A. Sloane, May 30 2014
The corresponding y numbers are given in A002333.

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002333.

Programs

  • Mathematica
    f[ p_ ] := For[ y=1, True, y++, If[ IntegerQ[ x=Sqrt[ p-2y y ] ], Return[ x ] ] ]; f/@Select[ Prime/@Range[ 1, 200 ], Mod[ #, 8 ]<4& ]

Extensions

More terms from Dean Hickerson, Oct 07 2001