This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002333 M0444 N0166 #27 Jul 14 2019 08:12:24 %S A002333 1,1,1,2,3,4,3,5,3,6,1,2,6,7,4,5,8,3,9,7,6,9,1,2,6,11,4,10,9,3,12,9, %T A002333 12,13,8,3,14,12,13,6,1,2,12,11,5,15,16,9,3,13,8,15,12,17,16,6,14,15, %U A002333 10,3,17,18,11,9,15,4,18,9,20,15,7,8,3,20,21,21,10,18,19,16,11,22,18 %N A002333 Numbers y such that p = x^2 + 2y^2, with prime p = A033203(n). %C A002333 The corresponding x numbers are given in A002332. %D A002333 A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1. %D A002333 D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55. %D A002333 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002333 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002333 T. D. Noe, <a href="/A002333/b002333.txt">Table of n, a(n) for n = 1..1000</a> %H A002333 A. J. C. Cunningham, <a href="/A002330/a002330.pdf">Quadratic Partitions</a>, Hodgson, London, 1904. [Annotated scans of selected pages] %H A002333 D. S., <a href="https://doi.org/10.1090/S0025-5718-69-99644-6">Review of A Table of Primes of Z[(-2)^(1/2)] by J. H. Jordan and J. R. Rabung</a>, Math. Comp., 23 (1969), p. 458. %t A002333 g[p_] := For[y=1, True, y++, If[IntegerQ[Sqrt[p-2y y]], Return[y]]]; g/@Select[Prime/@Range[1, 200], Mod[ #, 8]<4&] %Y A002333 Cf. A002332. %K A002333 nonn %O A002333 1,4 %A A002333 _N. J. A. Sloane_ %E A002333 More terms from _Dean Hickerson_, Oct 07 2001