A002343 Least positive integer y such that p = (x^2 - 5*y^2)/4 where p is the n-th odd prime such that 5 is a square mod p.
1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 4, 1, 1, 2, 4, 5, 5, 1, 2, 3, 6, 3, 1, 5, 2, 4, 1, 7, 5, 3, 5, 7, 1, 5, 7, 3, 1, 4, 5, 6, 8, 1, 2, 7, 9, 4, 5, 3, 5, 2, 1, 9, 5, 6, 7, 10, 11, 3, 1, 4, 11, 6, 7, 8, 9, 7, 1, 4, 9, 5, 3, 8, 13, 3, 1, 4, 11, 1, 8, 2, 9, 10, 11, 13, 14, 7, 4, 5, 11, 7, 2, 10, 11, 15, 5, 9
Offset: 1
Keywords
Examples
5 = (5^2 - 5*1^2)/4 so a(1)=1; 11 = (7^2 - 5*1^2)/4 so a(2)=1.
References
- A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
Programs
-
PARI
a(n)=local(y,p); if(n<1,0,p=0; y=1; until(p>=n,y++; if(issquare(5+O(prime(y))),p++)); p=prime(y); y=0; until(issquare(4*p+5*y^2),y++); y)
Comments