cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002351 Denominators of convergents to cube root of 2.

This page as a plain text file.
%I A002351 M2380 N0945 #31 Jul 04 2024 20:07:42
%S A002351 1,3,4,23,27,50,227,277,504,4309,4813,71691,76504,836731,1749966,
%T A002351 2586697,12096754,147747745,307592244,1070524477,2448641198,
%U A002351 3519165675,13006138223,55543718567,68549856790,124093575357,316737007504
%N A002351 Denominators of convergents to cube root of 2.
%D A002351 D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
%D A002351 P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
%D A002351 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002351 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002351 Robert Israel, <a href="/A002351/b002351.txt">Table of n, a(n) for n = 0..1975</a>
%H A002351 E. Bombieri and A. J. van der Poorten, <a href="https://doi.org/10.1007/978-94-017-1108-1_10">Continued fractions of algebraic numbers</a>, In: Bosma W., van der Poorten A. (eds) Computational Algebra and Number Theory. Mathematics and Its Applications, vol 325.
%H A002351 E. B. Burger, <a href="http://www.jstor.org/stable/2695737">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
%p A002351 Digits := 60: E := 2^(1/3); convert(evalf(E),confrac,50,'cvgts'): cvgts;
%p A002351 # Alternate:
%p A002351 N:= 100: # to get a(1) to a(N)
%p A002351 c[0] := 1: p[0] := 1: a[0] := 0: p[1] := 1: a[1] := 1:
%p A002351 for n from 1 to N do
%p A002351   c[n] := floor((-1)^(n)*3*p[n]^2/(a[n]*(p[n]^3-2*a[n]^3)) - a[n-1]/a[n]);
%p A002351   p[n+1] := c[n]*p[n] + p[n-1];
%p A002351   a[n+1] := c[n]*a[n] + a[n-1];
%p A002351 od:
%p A002351 seq(a[i], i=1..N); # _Robert Israel_, Oct 08 2017
%t A002351 Denominator[Convergents[Surd[2,3],30]] (* _Harvey P. Dale_, Apr 02 2018 *)
%Y A002351 Cf. A002352 (numerators), A002945.
%K A002351 nonn,frac
%O A002351 0,2
%A A002351 _N. J. A. Sloane_
%E A002351 Offset changed by _Andrew Howroyd_, Jul 04 2024