This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002352 M3260 N1316 #32 May 27 2025 14:25:14 %S A002352 1,4,5,29,34,63,286,349,635,5429,6064,90325,96389,1054215,2204819, %T A002352 3259034,15240955,186150494,387541943,1348776323,3085094589, %U A002352 4433870912,16386707325,69980700212,86367407537,156348107749,399063623035,5743238830239,17628780113752 %N A002352 Numerators of convergents to cube root of 2. %D A002352 D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67. %D A002352 P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120. %D A002352 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002352 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002352 Robert Israel, <a href="/A002352/b002352.txt">Table of n, a(n) for n = 0..1975</a> %H A002352 E. Bombieri and A. J. van der Poorten, <a href="https://doi.org/10.1007/978-94-017-1108-1_10">Continued fractions of algebraic numbers</a>, In: Bosma W., van der Poorten A. (eds) Computational Algebra and Number Theory. Mathematics and Its Applications, vol 325. %H A002352 E. B. Burger, <a href="https://web.archive.org/web/20240529063505/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Burger.pdf">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829. %F A002352 From _Robert Israel_, Oct 08 2017: (Start) %F A002352 c(n) = floor((-1)^n*3*a(n)^2/(q(n)*(a(n)^3-2*q(n)^3)) - q(n-1)/q(n)), %F A002352 a(n+1) = c(n)*a(n) + a(n-1), %F A002352 q(n+1) = c(n)*q(n) + q(n-1), with a(0) = 1, c(0) = 1, q(0) = 0, a(1) = 1, q(1) = 1. (End) %p A002352 Digits := 60: E := 2^(1/3); convert(evalf(E),confrac,50,'cvgts'): cvgts; %p A002352 # Alternate: %p A002352 N:= 100: # to get a(1) to a(N) %p A002352 c[0] := 1: a[0] := 1: q[0] := 0: a[1] := 1: q[1] := 1: %p A002352 for n from 1 to N do %p A002352 c[n] := floor((-1)^n*3*a[n]^2/(q[n]*(a[n]^3-2*q[n]^3)) - q[n-1]/q[n]); %p A002352 a[n+1] := c[n]*a[n] + a[n-1]; %p A002352 q[n+1] := c[n]*q[n] + q[n-1]; %p A002352 od: seq(a[i], i=1..N); # _Robert Israel_, Oct 08 2017 %t A002352 Convergents[CubeRoot[2],30]//Numerator (* _Harvey P. Dale_, May 30 2023 *) %Y A002352 Cf. A002351 (denominators), A002945. %K A002352 nonn,frac %O A002352 0,2 %A A002352 _N. J. A. Sloane_ %E A002352 Offset changed by _Andrew Howroyd_, Jul 04 2024