cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002398 Coefficients for step-by-step integration.

This page as a plain text file.
%I A002398 M3101 N1256 #29 Oct 15 2023 00:24:30
%S A002398 1,3,23,165,3802,21385,993605,15198435,394722916,3814933122,
%T A002398 447827009070,5229570190845,862250830559382,11802457085079375,
%U A002398 173406732097447849,5443765223302501095,1545512798280174555832,27361456077246355572508,9725198808628092900136884,191684785790597591594500398
%N A002398 Coefficients for step-by-step integration.
%C A002398 This is the coefficient of f(x0) in the estimate for y(x1) - y(x0).
%D A002398 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002398 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002398 Jack W Grahl, <a href="/A002398/b002398.txt">Table of n, a(n) for n = 0..100</a>
%H A002398 Jack W Grahl, <a href="/A002405/a002405.pdf">Explanation of how this sequence is calculated</a>.
%H A002398 Jack W Grahl, <a href="/A002405/a002405.py.txt">Python code to calculate this and related sequences</a>.
%H A002398 W. F. Pickard, <a href="https://doi.org/10.1145/321217.321226">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233.
%H A002398 W. F. Pickard, <a href="/A002397/a002397.pdf">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
%Y A002398 Cf. A027486.
%Y A002398 Column 0 of A260780.
%Y A002398 The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781.
%K A002398 nonn
%O A002398 0,2
%A A002398 _N. J. A. Sloane_
%E A002398 More terms from _Jack W Grahl_, Feb 28 2021