This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002400 M4025 N1670 #23 Oct 15 2023 00:25:42 %S A002400 5,111,5232,49910,3527745,76435695,2673350008,33507517680, %T A002400 4954123399050,71186377398675,14169975006172392,230478985529218998, %U A002400 3970388091885696481,144475785096372785055,47074452451240708494000,948198128552832829175504,380523626987174239611912012,8410876353715824882741160170 %N A002400 Coefficients for step-by-step integration. %C A002400 These are the coefficients of f(x_{-2}) in the estimate for y(x1) - y(x0). %D A002400 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002400 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002400 Jack W Grahl, <a href="/A002400/b002400.txt">Table of n, a(n) for n = 2..100</a> %H A002400 Jack W Grahl, <a href="/A002405/a002405.pdf">Explanation of how this sequence is calculated</a>. %H A002400 Jack W Grahl, <a href="/A002405/a002405.py.txt">Python code to calculate this and related sequences</a>. %H A002400 W. F. Pickard, <a href="https://doi.org/10.1145/321217.321226">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233. %H A002400 W. F. Pickard, <a href="/A002397/a002397.pdf">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233. [Annotated scanned copy] %Y A002400 Column 2 of A260780. %Y A002400 The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781. %K A002400 nonn %O A002400 2,1 %A A002400 _N. J. A. Sloane_ %E A002400 More terms from _Jack W Grahl_, Feb 28 2021