This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002402 M4547 N1931 #23 Oct 16 2023 23:20:52 %S A002402 1,8,57,1292,7135,325560,4894715,125078632,1190664342,137798986920, %T A002402 1587893097945,258558380321076,3497709055775649,50821738502398864, %U A002402 1578753057237451095,443765620067972169968,7782162960545369351956,2741163034641146307693072,53564617257321061756508358,1100369599246721484969558920 %N A002402 Coefficients for step-by-step integration. %C A002402 These are the coefficients of f(x_{-1}) in the estimate for y(x0) - y(x1). %D A002402 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002402 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002402 Jack W Grahl, <a href="/A002402/b002402.txt">Table of n, a(n) for n = 1..100</a> %H A002402 Jack W Grahl, <a href="/A002405/a002405.pdf">Explanation of how this sequence is calculated</a>. %H A002402 Jack W Grahl, <a href="/A002405/a002405.py.txt">Python code to calculate this and related sequences</a>. %H A002402 W. F. Pickard, <a href="https://doi.org/10.1145/321217.321226">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233. %H A002402 W. F. Pickard, <a href="/A002397/a002397.pdf">Tables for the step-by-step integration of ordinary differential equations of the first order</a>, J. ACM 11 (1964), 229-233. [Annotated scanned copy] %Y A002402 Column 1 of A260781. %Y A002402 The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781. %K A002402 nonn %O A002402 1,2 %A A002402 _N. J. A. Sloane_ %E A002402 More terms by _Jack W Grahl_, Feb 28 2021