cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002430 Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).

This page as a plain text file.
%I A002430 M2100 N0832 #64 Feb 16 2025 08:32:25
%S A002430 1,1,2,17,62,1382,21844,929569,6404582,443861162,18888466084,
%T A002430 113927491862,58870668456604,8374643517010684,689005380505609448,
%U A002430 129848163681107301953,1736640792209901647222,418781231495293038913922
%N A002430 Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).
%C A002430 a(n) appears to be a multiple of A046990(n) (checked up to n=250). - _Ralf Stephan_, Mar 30 2004
%C A002430 The Taylor series for tan(x) appears to be identical to the sequence of quotients A160469(n)/A156769(n). - _Johannes W. Meijer_, May 24 2009
%D A002430 G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
%D A002430 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
%D A002430 A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.
%D A002430 H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.
%D A002430 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002430 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002430 Seiichi Manyama, <a href="/A002430/b002430.txt">Table of n, a(n) for n = 1..276</a> (first 100 terms from T. D. Noe)
%H A002430 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A002430 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).
%H A002430 R. W. van der Waall, <a href="http://dx.doi.org/10.1016/0022-314X(73)90050-4">On a property of tan x</a>, J. Number Theory 5 (1973) 242-244.
%H A002430 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HyperbolicTangent.html">Hyperbolic Tangent</a>.
%H A002430 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Tangent.html">Tangent</a>.
%H A002430 Herbert S. Wilf, <a href="https://www2.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, Academic Press, NY, 1990. See p. 50.
%F A002430 a(n) is the numerator of (-1)^(n-1)*2^(2*n)*(2^(2*n) -1)* Bernoulli(2*n)/(2*n)!. - _Johannes W. Meijer_, May 24 2009
%F A002430 Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x - 2^x)*Zeta(1-x)/(x-1)!. Then a(n) = numerator(R(2*n)) and A036279(n) = denominator(R(2*n)). - _Peter Luschny_, Aug 25 2015
%e A002430 tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... =
%e A002430   x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... =
%e A002430   Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |bernoulli_2n| / (n*(2n-1)!).
%e A002430 tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...
%p A002430 R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!:
%p A002430 seq(numer(R(2*n)), n=1..20); # _Peter Luschny_, Aug 25 2015
%t A002430 a[n_]:= (-1)^Floor[n/2]*(4^n - 2^n)*Zeta[1-n]/(n-1)!; Table[Numerator@ a[2n], {n, 20}] (* _Michael De Vlieger_, Aug 25 2015 *)
%o A002430 (PARI) a(n) = numerator( (-1)^(n-1)*4^n*(4^n-1)*bernfrac(2*n)/(2*n)! ); \\ _G. C. Greubel_, Jul 03 2019
%o A002430 (Magma) [Numerator( (-1)^(n-1)*4^n*(4^n-1)*Bernoulli(2*n)/Factorial(2*n) ): n in [1..20]]; // _G. C. Greubel_, Jul 03 2019
%o A002430 (Sage) [numerator( (-1)^(n-1)*4^n*(4^n-1)*bernoulli(2*n)/factorial(2*n)  ) for n in (1..20)] # _G. C. Greubel_, Jul 03 2019
%Y A002430 Cf. A036279 (denominators), A000182, A099612, A160469, A156769.
%K A002430 nonn,easy,frac
%O A002430 1,3
%A A002430 _N. J. A. Sloane_
%E A002430 More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003