cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002449 Number of different types of binary trees of height n.

This page as a plain text file.
%I A002449 M1683 N0664 #77 Aug 24 2025 11:34:46
%S A002449 1,1,2,6,26,166,1626,25510,664666,29559718,2290267226,314039061414,
%T A002449 77160820913242,34317392762489766,27859502236825957466,
%U A002449 41575811106337540656038,114746581654195790543205466,588765612737696531880325270438,5642056933026209681424588087899226
%N A002449 Number of different types of binary trees of height n.
%C A002449 Two trees have the same type if they have the same number of nodes at each level. - _Chams Lahlou_, Jan 26 2019
%C A002449 Equals the number of partitions of 2^n-1 into powers of 2 (cf. A018819). a(n) = A018819(2^n-1) = binary partitions of 2^n-1. - _Paul D. Hanna_, Sep 22 2004
%D A002449 George E. Andrews, Peter Paule, Axel Riese and Volker Strehl, "MacMahon's Partition Analysis V: Bijections, recursions and magic squares," in Algebraic Combinatorics and Applications, edited by Anton Betten, Axel Kohnert, Reinhard Laue and Alfred Wassermann [Proceedings of ALCOMA, September 1999] (Springer, 2001), 1-39.
%D A002449 A. Cayley, "On a problem in the partition of numbers," Philosophical Magazine (4) 13 (1857), 245-248; reprinted in his Collected Math. Papers, Vol. 3, pp. 247-249. - _Don Knuth_, Aug 17 2001
%D A002449 R. F. Churchhouse, Congruence properties of the binary partition function. Proc. Cambridge Philos. Soc. 66 1969 371-376.
%D A002449 R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
%D A002449 D. E. Knuth, Selected Papers on Analysis of Algorithms, p. 75 (gives asymptotic formula and lower bound).
%D A002449 H. Minc, The free commutative entropic logarithmetic. Proc. Roy. Soc. Edinburgh Sect. A 65 1959 177-192 (1959).
%D A002449 T. K. Moon (tmoon(AT)artemis.ece.usu.edu), Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
%D A002449 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002449 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002449 T. D. Noe, <a href="/A002449/b002449.txt">Table of n, a(n) for n = 0..50</a>
%H A002449 A. Cayley, <a href="https://www.math.ucla.edu/~pak/papers/Cayley-comp.pdf">On a problem in the partition of numbers</a>, Philosophical Magazine (4) 13 (1857), 245-248; reprinted in his Collected Math. Papers, Vol. 3, pp. 247-249.
%H A002449 M. Cook and M. Kleber, <a href="https://doi.org/10.37236/1522">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44.
%H A002449 Olivier Danvy, <a href="https://arxiv.org/abs/2412.03127">Summa Summarum: Moessner's Theorem without Dynamic Programming</a>, arXiv:2412.03127 [cs.DM], 2024. See pp. 31, 33, 34.
%H A002449 Chams Lahlou, <a href="/A002449/a002449.pdf">A formula for some integer sequences that can be described by generating trees</a>
%F A002449 a(n) = A098539(n, 1). - _Paul D. Hanna_, Sep 13 2004
%F A002449 G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1) + xF(x,2n) for n>0 with F(x,0)=1. - _Paul D. Hanna_, Apr 16 2007
%F A002449 From _Benedict W. J. Irwin_, Nov 16 2016: (Start)
%F A002449 Conjecture: a(n+2) = Sum_{i_1=1..2}Sum_{i_2=1..2*i_1}...Sum_{i_n=1..2*i_(n-1)} (2*i_n). For example:
%F A002449 a(3) = Sum_{i=1..2} 2*i.
%F A002449 a(4) = Sum_{i=1..2}Sum_{j=1..2*i} 2*j.
%F A002449 a(5) = Sum_{i=1..2}Sum_{j=1..2*i}Sum_{k=1..2*j} 2*k. (End)
%F A002449 The conjecture is true: see Links. - _Chams Lahlou_, Jan 26 2019
%e A002449 G.f. = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 166*x^5 + 1626*x^6 + 25510*x^7 + ...
%p A002449 d := proc(n) option remember; if n<1 then 1 else sum(d(n-1),k=1..2*k) fi end; A002449 := n -> eval(d(n-1),k=1); # _Michael Kleber_, Dec 05 2000
%t A002449 lim = 16; p[0] = p[1] = 1; Do[If[OddQ[n], p[n] = p[n - 1], p[n] = p[n - 1] + p[n/2]], {n, 1, 2^lim - 1}]; a[n_] := p[2^n - 1]; Table[a[n], {n, 0, lim}] (* _Jean-François Alcover_, Sep 20 2011, after _Paul D. Hanna_ *)
%o A002449 (PARI) a(n)=local(A,B,C,m);A=matrix(1,1);A[1,1]=1; for(m=2,n+1,B=A^2;C=matrix(m,m);for(j=1,m, for(k=1,j, if(j<3 || k==j || k>m-1,C[j,k]=1,if(k==1,C[j,k]=B[j-1,1],C[j,k]=B[j-1,k-1])); ));A=C);A[n+1,1] \\ _Paul D. Hanna_
%o A002449 (PARI) a(n)=polcoeff(1/prod(k=0,n,1-x^(2^k)+O(x^(2^n))),2^n-1)
%o A002449 (PARI) {a(n, k=2) = if(n<2, n>=0, sum(i=1, k, a(n-1, 2*i)))}; /* _Michael Somos_, Nov 24 2016 */
%Y A002449 Cf. A001699, A056207, A098539, A018819.
%K A002449 nonn,nice,easy,changed
%O A002449 0,3
%A A002449 _N. J. A. Sloane_
%E A002449 Recurrence and more terms from _Michael Kleber_, Dec 05 2000