cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002453 Central factorial numbers: 2nd subdiagonal of A008958.

This page as a plain text file.
%I A002453 M5249 N2283 #81 Jan 13 2025 10:51:11
%S A002453 1,35,966,24970,631631,15857205,397027996,9931080740,248325446061,
%T A002453 6208571999575,155218222621826,3880490869237710,97012589464171291,
%U A002453 2425317596203339145,60632965641474990456,1515824372664398367880
%N A002453 Central factorial numbers: 2nd subdiagonal of A008958.
%D A002453 A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
%D A002453 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
%D A002453 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002453 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002453 T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
%H A002453 G. C. Greubel, <a href="/A002453/b002453.txt">Table of n, a(n) for n = 0..710</a>
%H A002453 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A002453 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A002453 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%H A002453 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-259,225).
%F A002453 G.f.: 1/((1 - x)*(1 - 9*x)*(1 - 25*x)).
%F A002453 a(n) = (5^(2*n + 4) - 3^(2*n + 5) + 2)/384.
%F A002453 E.g.f.: sinh(x)^5/120 = Sum_{n>=0} a(n)*x^(2*n + 5)/(2*n + 5)!. - _Vladimir Kruchinin_, Sep 30 2012
%F A002453 a(n) = det(|v(i+3,j+2)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956). - _Mircea Merca_, Apr 06 2013
%F A002453 a(n) = 35*a(n-1) -259*a(n-2) +225*a(n-3), with a(0) = 1, a(1) = 35, a(2) = 966. - _Harvey P. Dale_, Feb 25 2015
%F A002453 a(n) = 25*a(n-1) + A002452(n+1), with a(0) = 1. - _Nadia Lafreniere_, Aug 08 2022
%p A002453 A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # _Simon Plouffe_ (from his 1992 dissertation).
%t A002453 CoefficientList[Series[1/((1-x)(1-9x)(1-25x)),{x,0,20}],x] (* or *) LinearRecurrence[{35,-259,225},{1,35,966},20] (* _Harvey P. Dale_, Feb 25 2015 *)
%o A002453 (GAP) List([0..20],n->(5^(2*n+4)-3^(2*n+5)+2)/384); # _Muniru A Asiru_, Dec 20 2018
%o A002453 (PARI) vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ _G. C. Greubel_, Jul 04 2019
%o A002453 (Magma) [(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // _G. C. Greubel_, Jul 04 2019
%o A002453 (Sage) [(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # _G. C. Greubel_, Jul 04 2019
%Y A002453 Right-hand column 2 in triangle A008958.
%Y A002453 Cf. A002452.
%K A002453 nonn,easy
%O A002453 0,2
%A A002453 _N. J. A. Sloane_, _Simon Plouffe_