This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002456 M5216 N2270 #26 Oct 16 2023 23:26:40 %S A002456 0,1,30,1260,75600,6237000,681080400,95351256000,16672848192000, %T A002456 3563821301040000,914714133933600000,277707211062240960000, %U A002456 98459829376612704000000,40319300129722902288000000,18888041368462498071840000000,10037644841525784689606400000000 %N A002456 Joffe's central differences of 0, A241171(n,n-1). %D A002456 H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283. %D A002456 A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112. %D A002456 S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126. %D A002456 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002456 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002456 Vaclav Kotesovec, <a href="/A002456/b002456.txt">Table of n, a(n) for n = 1..235</a> %F A002456 a(n) ~ sqrt(Pi) * 2^n * n^(2*n+3/2) / (3 * exp(2*n)). - _Vaclav Kotesovec_, Apr 25 2014 %p A002456 T:=proc(n,k) option remember; %p A002456 if k = 0 or k > n then 0 %p A002456 elif k=1 then 1 %p A002456 else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi; %p A002456 end; %p A002456 [seq(T(n,n-1),n=1..30)]; %t A002456 T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[_, 1] = 1; T[_, _] = 0; %t A002456 a[n_] := T[n, n-1]; %t A002456 Array[a, 16] (* _Jean-François Alcover_, Jul 03 2019 *) %Y A002456 A diagonal of A241171. %K A002456 nonn %O A002456 1,3 %A A002456 _N. J. A. Sloane_ %E A002456 Entry revised by _N. J. A. Sloane_, Apr 22 2014