This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002486 M4456 N1886 #91 Jul 25 2025 12:28:05 %S A002486 1,0,1,7,106,113,33102,33215,66317,99532,265381,364913,1360120, %T A002486 1725033,25510582,52746197,78256779,131002976,340262731,811528438, %U A002486 1963319607,4738167652,6701487259,567663097408,1142027682075,1709690779483,2851718461558,44485467702853 %N A002486 Apart from two leading terms (which are present by convention), denominators of convergents to Pi (A002485 and A046947 give numerators). %C A002486 Disregarding first two terms, integer diameters of circles beginning with 1 and a(n+1) is the smallest integer diameter with corresponding circumference nearer an integer than is the circumference of the circle with diameter a(n). See PARI program. - _Rick L. Shepherd_, Oct 06 2007 %C A002486 a(n+1) = numerator of fraction obtained from truncated continued fraction expansion of 1/Pi to n terms. - _Artur Jasinski_, Mar 25 2008 %D A002486 P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors). %D A002486 CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88. %D A002486 K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293. %D A002486 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002486 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A002486 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274. %H A002486 Daniel Mondot, <a href="/A002486/b002486.txt">Table of n, a(n) for n = 0..1947</a> (terms 0..201 from T. D. Noe, terms 202..1000 from G. C. Greubel). %H A002486 E. B. Burger, <a href="https://web.archive.org/web/20240529063505/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Burger.pdf">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829. %H A002486 Marc Daumas, <a href="http://www.ipsl.jussieu.fr/~omamce/SP/Oct00/Marc_Daumas.pdf">Des implantations différentes ...</a>, see p. 8. [Broken link] %H A002486 P. Finsler, <a href="http://dx.doi.org/10.5169/seals-12812">Über die Faktorenzerlegung natuerlicher Zahlen</a>, Elemente der Mathematik, 2 (1947), 1-11, see p. 7. %H A002486 Henryk Fuks, <a href="http://arxiv.org/abs/1111.1739">Adam Adamandy Kochanski's approximations of Pi: reconstruction of the algorithm</a>, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014; Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45. %H A002486 G. P. Michon, <a href="http://www.numericana.com/answer/fractions.htm">Continued Fractions</a> %H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi.</a> %H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction</a> %H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiApproximations.html">Pi Approximations</a> %H A002486 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a> %e A002486 The convergents are 3, 22/7, 333/106, 355/113, 103993/33102, ... %p A002486 Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts; %p A002486 with(numtheory):cf := cfrac (Pi,100): seq(nthdenom (cf,i), i=-2..28 ); # _Zerinvary Lajos_, Feb 07 2007 %t A002486 Join[{1,0},Denominator[Convergents[Pi,30]]] (* _Harvey P. Dale_, Sep 13 2013 *) %o A002486 (PARI) for(i=1,#cf=contfrac(Pi),print1(contfracpnqn(vecextract(cf,2^i-1))[2,2]",")) \\ _M. F. Hasler_, Apr 01 2013 %Y A002486 Cf. A002485 (numerators), A072398/A072399, A063674/A063673, A132049/A132050. %K A002486 nonn,easy,nice,frac %O A002486 0,4 %A A002486 _N. J. A. Sloane_ %E A002486 Extended and corrected by _David Sloan_, Sep 23 2002