cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002486 Apart from two leading terms (which are present by convention), denominators of convergents to Pi (A002485 and A046947 give numerators).

This page as a plain text file.
%I A002486 M4456 N1886 #91 Jul 25 2025 12:28:05
%S A002486 1,0,1,7,106,113,33102,33215,66317,99532,265381,364913,1360120,
%T A002486 1725033,25510582,52746197,78256779,131002976,340262731,811528438,
%U A002486 1963319607,4738167652,6701487259,567663097408,1142027682075,1709690779483,2851718461558,44485467702853
%N A002486 Apart from two leading terms (which are present by convention), denominators of convergents to Pi (A002485 and A046947 give numerators).
%C A002486 Disregarding first two terms, integer diameters of circles beginning with 1 and a(n+1) is the smallest integer diameter with corresponding circumference nearer an integer than is the circumference of the circle with diameter a(n). See PARI program. - _Rick L. Shepherd_, Oct 06 2007
%C A002486 a(n+1) = numerator of fraction obtained from truncated continued fraction expansion of 1/Pi to n terms. - _Artur Jasinski_, Mar 25 2008
%D A002486 P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
%D A002486 CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
%D A002486 K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
%D A002486 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002486 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002486 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.
%H A002486 Daniel Mondot, <a href="/A002486/b002486.txt">Table of n, a(n) for n = 0..1947</a> (terms 0..201 from T. D. Noe, terms 202..1000 from G. C. Greubel).
%H A002486 E. B. Burger, <a href="https://web.archive.org/web/20240529063505/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Burger.pdf">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
%H A002486 Marc Daumas, <a href="http://www.ipsl.jussieu.fr/~omamce/SP/Oct00/Marc_Daumas.pdf">Des implantations différentes ...</a>, see p. 8. [Broken link]
%H A002486 P. Finsler, <a href="http://dx.doi.org/10.5169/seals-12812">Über die Faktorenzerlegung natuerlicher Zahlen</a>, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.
%H A002486 Henryk Fuks, <a href="http://arxiv.org/abs/1111.1739">Adam Adamandy Kochanski's approximations of Pi: reconstruction of the algorithm</a>, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014; Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
%H A002486 G. P. Michon, <a href="http://www.numericana.com/answer/fractions.htm">Continued Fractions</a>
%H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi.</a>
%H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction</a>
%H A002486 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiApproximations.html">Pi Approximations</a>
%H A002486 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>
%e A002486 The convergents are 3, 22/7, 333/106, 355/113, 103993/33102, ...
%p A002486 Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts;
%p A002486 with(numtheory):cf := cfrac (Pi,100): seq(nthdenom (cf,i), i=-2..28 ); # _Zerinvary Lajos_, Feb 07 2007
%t A002486 Join[{1,0},Denominator[Convergents[Pi,30]]] (* _Harvey P. Dale_, Sep 13 2013 *)
%o A002486 (PARI) for(i=1,#cf=contfrac(Pi),print1(contfracpnqn(vecextract(cf,2^i-1))[2,2]",")) \\ _M. F. Hasler_, Apr 01 2013
%Y A002486 Cf. A002485 (numerators), A072398/A072399, A063674/A063673, A132049/A132050.
%K A002486 nonn,easy,nice,frac
%O A002486 0,4
%A A002486 _N. J. A. Sloane_
%E A002486 Extended and corrected by _David Sloan_, Sep 23 2002