This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002513 M2354 N0930 N0931 #125 Feb 07 2024 09:01:35 %S A002513 1,1,3,4,9,12,23,31,54,73,118,159,246,329,489,651,940,1242,1751,2298, %T A002513 3177,4142,5630,7293,9776,12584,16659,21320,27922,35532,46092,58342, %U A002513 75039,94503,120615,151173,191611,239060,301086,374026,468342,579408,721638,889287 %N A002513 Number of "cubic partitions" of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x. %C A002513 For a real polynomial equation of degree n, a(n) is the number of possibilities for the roots to be real and unequal, real and equal (in various combinations), or simple or multiple complex conjugates. For example, a(3)=4 because we can have: three equal roots, two equal roots, three distinct real roots and two complex roots (see the Monthly Problem reference). - _Emeric Deutsch_, Mar 22 2005 %C A002513 Number of partitions of n, the even parts being of two kinds. E.g. a(4)=9 because we have 4, 4', 3+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - _Emeric Deutsch_, Mar 22 2005 %C A002513 For the name "cubic partition" see Xiong; Chen & Lin; Chern & Dastidar. - _Michel Marcus_, Jan 28 2016 %D A002513 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0930 and N0931). %D A002513 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002513 Alois P. Heinz, <a href="/A002513/b002513.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe) %H A002513 Zakir Ahmed, Nayandeep Deka Baruah, and Manosij Ghosh Dastidar, <a href="https://doi.org/10.1016/j.jnt.2015.05.002">New congruences modulo 5 for the number of 2-color partitions</a>, Journal of Number Theory, Volume 157, December 2015, Pages 184-198. %H A002513 Koustav Banerjee, <a href="https://epub.jku.at/obvulihs/content/titleinfo/8258752/">New Asymptotics and Inequalities Related to the Partition Function</a>, Doctoral Thesis, Johannes Kepler Univ. (Linz, Austria 2022). %H A002513 M. F. Capobianco and C. F. Pinzka, <a href="http://www.jstor.org/stable/2317284">Problem 2055</a>, Amer. Math. Monthly, 75 (1968), 188; 76 (1969), 194. %H A002513 William Y. C. Chen and Bernard L. S. Lin, <a href="http://arxiv.org/abs/0910.1263">Congruences for the Number of Cubic Partitions Derived from Modular Forms</a>, arXiv:0910.1263 [math.NT], 2016. %H A002513 Shane Chern and Manosij Ghosh Dastidar, <a href="http://arxiv.org/abs/1601.06480">Congruences and recursions for the cubic partitions</a>, arXiv:1601.06480 [math.NT], 2016. %H A002513 Marston Conder, Tomaš Pisanski, and Arjana Žitnik, <a href="http://arxiv.org/abs/1505.02029">Vertex-transitive graphs and their arc-types</a>, arXiv preprint arXiv:1505.02029 [math.CO], 2015. %H A002513 R. K. Guy, <a href="/A002513/a002513.pdf">Letter to Morris Newman, Aug 21 1986</a>, concerning A2513 (annotated scanned copy, with permission). %H A002513 David J. Hemmer, <a href="https://arxiv.org/abs/2402.03643">Generating functions for fixed points of the Mullineux map</a>, arXiv:2402.03643 [math.CO], 2024. Table 1 p. 5 mentions this sequence. %H A002513 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 16. %H A002513 Vaclav Kotesovec, <a href="/A002513/a002513_1.pdf">Asymptotics of sequence A002513</a>, 2019. %H A002513 Lukas Mauth, <a href="https://arxiv.org/abs/2305.03396">Exact formula for cubic partitions</a>, arXiv:2305.03396 [math.NT], 2023. %H A002513 Morris Newman, <a href="https://doi.org/10.1112/plms/s3-9.3.373">Construction and application of a class of modular functions (II)</a>. Proc. London Math. Soc. (3) 9 1959 373-387. %H A002513 Morris Newman, <a href="/A002507/a002507.pdf">Construction and application of a class of modular functions, II</a>, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible] %H A002513 James A. Sellers, <a href="https://ajc.maths.uq.edu.au/pdf/60/ajc_v60_p191.pdf">Elementary proofs of congruences for the cubic and overcubic partition functions</a>, Australasian Journal of Combinatorics, Volume 60(2) (2014), Pages 191-197. %H A002513 Xinhua Xiong, <a href="http://arxiv.org/abs/1004.4737">The number of cubic partitions modulo powers of 5</a>, arXiv:1004.4737 [math.NT], 2010. %F A002513 From _Michael Somos_, Mar 23 2003: (Start) %F A002513 Expansion of q^(1/8) / (eta(q) * eta(q^2)) in powers of q. %F A002513 Euler transform of period 2 sequence [1, 2, ...]. %F A002513 G.f.: Product_{k>0} 1/((1 - x^(2*k))^2 * (1 - x^(2*k-1))). %F A002513 (End) %F A002513 Given g.f. A(x), then B(q) = A(q)^8 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 16*v^4 + v^3*w + 256*u*v^3 + 16*u*v^2*w - u^2*w^2. - _Michael Somos_, Apr 03 2005 %F A002513 a(n) ~ exp(Pi*sqrt(n)) / (8*n^(5/4)) * (1 - (Pi/16 + 15/(8*Pi))/sqrt(n)). - _Vaclav Kotesovec_, Jun 22 2015, extended Jan 17 2017 %F A002513 From _Michel Marcus_, Jan 28 2016: (Start) %F A002513 G.f.: Product_{k>0} 1/((1 - x^k) * (1 - x^(2*k))). %F A002513 a(3n+2) = 0 (mod 3). %F A002513 a(25n+22) = 0 (mod 5) (see Xiong). %F A002513 a(49n+15) = a(49n+29) = a(49n+36) = a(49n+43) = 0 (mod 7) (see Chen & Lin). %F A002513 a(297n+62) = a(297n+161) = 0 (mod 11) (see Chern & Dastidar). %F A002513 (End) %F A002513 G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(-7/2) (t/i)^-1 f(t) where q = exp(2 Pi i t). - _Michael Somos_, Oct 17 2017 %F A002513 G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Aug 13 2018 %F A002513 From _Peter Bala_, Sep 25 2023: (Start) %F A002513 The g.f. A(x) satisfies log(A(x)) = x + 5*x^2/2 + 4*x^3/3 + 13*x^4/4 + ... = Sum_{n >= 1} A215947(n)*x^n/n. %F A002513 A(x^2) = 4/(F(x)*F(-x)) = 2/(F(x)*G(-x)), where F(x) = Sum_{n = -oo..oo} x^(n*(n+1)/2) is the g.f. of A089799 and G(x) = Sum_{n = -oo..oo} x^(n^2) is the g.f. of A000122. Cf. A001934. Note that 4/(F(-x)*F(-x)) is the g.f. of A273225. %F A002513 The self-convolution A(x)^2 is the g.f. of A319455. (End) %e A002513 G.f. = 1 + x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 23*x^6 + 31*x^7 + 54*x^8 + 73*x^9 + ... %e A002513 G.f. = 1/q + q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 23*q^47 + 31*q^55 + 54*q^63 + ... %p A002513 N:= 50: # to get a(0) to a(N) %p A002513 P:= mul((1-x^(2*k))^(-2)*(1-x^(2*k-1))^(-1),k=1..ceil(N/2)): %p A002513 S:= series(P, x, N+1): %p A002513 seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Jan 26 2016 %p A002513 # second Maple program: %p A002513 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( %p A002513 `if`(d::odd, d, 2*d), d=numtheory[divisors](j)), j=1..n)/n) %p A002513 end: %p A002513 seq(a(n), n=0..50); # _Alois P. Heinz_, Nov 05 2020 %t A002513 max = 50; f[x_] := Product[ 1/((1-x^(2 k))^2*(1-x^(2k-1))), {k, 1, Ceiling[max/2]} ]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* _Jean-François Alcover_, Nov 04 2011 *) %t A002513 a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q] / QPochhammer[ q^2], {q, 0, n}];(* _Michael Somos_, Jul 17 2013 *) %t A002513 Table[Sum[PartitionsP[k]*PartitionsP[n-2k],{k,0,n/2}],{n,0,50}] (* _Vaclav Kotesovec_, Jun 22 2015 *) %o A002513 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A) / eta(x^2 + A), n))}; /* _Michael Somos_, Nov 10 2005 */ %o A002513 (Sage) # uses[EulerTransform from A166861] %o A002513 b = BinaryRecurrenceSequence(0, 1, 2) %o A002513 a = EulerTransform(b) %o A002513 print([a(n) for n in range(44)]) # _Peter Luschny_, Nov 17 2022 %Y A002513 Cf. A000122, A015128, A001934, A089799, A215947, A273225, A319455. %K A002513 nonn,easy,nice %O A002513 0,3 %A A002513 _N. J. A. Sloane_, _Simon Plouffe_ %E A002513 More terms and information from _Michael Somos_, Mar 23 2003