cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002562 Number of ways of placing n nonattacking queens on n X n board (symmetric solutions count only once).

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 6, 12, 46, 92, 341, 1787, 9233, 45752, 285053, 1846955, 11977939, 83263591, 621012754, 4878666808, 39333324973, 336376244042, 3029242658210, 28439272956934, 275986683743434, 2789712466510289, 29363495934315694
Offset: 1

Views

Author

Keywords

Examples

			a(4) = 1:
  +---------+
  | . . Q . |
  | Q . . . |
  | . . . Q |
  | . Q . . |
  +---------+
a(5) = 2:
  +-----------+ +-----------+
  | . . . Q . | | . . . Q . |
  | . Q . . . | | Q . . . . |
  | . . . . Q | | . . Q . . |
  | . . Q . . | | . . . . Q |
  | Q . . . . | | . Q . . . |
  +-----------+ +-----------+
a(6) = 1:
  +-------------+
  | . . . . Q . |
  | . . Q . . . |
  | Q . . . . . |
  | . . . . . Q |
  | . . . Q . . |
  | . Q . . . . | - _Hugo Pfoertner_, Mar 17 2019
  +-------------+
a(7) = 6:
  +---------------+  +---------------+  +---------------+
  | Q . . . . . . |  | Q . . . . . . |  | . Q . . . . . |
  | . . Q . . . . |  | . . . Q . . . |  | . . . Q . . . |
  | . . . . Q . . |  | . . . . . . Q |  | Q . . . . . . |
  | . . . . . . Q |  | . . Q . . . . |  | . . . . . . Q |
  | . Q . . . . . |  | . . . . . Q . |  | . . . . Q . . |
  | . . . Q . . . |  | . Q . . . . . |  | . . Q . . . . |
  | . . . . . Q . |  | . . . . Q . . |  | . . . . . Q . |
  +---------------+  +---------------+  +---------------+
.
  +---------------+  +---------------+  +---------------+
  | . Q . . . . . |  | . Q . . . . . |  | . Q . . . . . |
  | . . . . Q . . |  | . . . . Q . . |  | . . . . . Q . |
  | Q . . . . . . |  | . . . . . . Q |  | . . Q . . . . |
  | . . . Q . . . |  | . . . Q . . . |  | . . . . . . Q |
  | . . . . . . Q |  | Q . . . . . . |  | . . . Q . . . |
  | . . Q . . . . |  | . . Q . . . . |  | Q . . . . . . |
  | . . . . . Q . |  | . . . . . Q . |  | . . . . Q . . |
  +---------------+  +---------------+  +---------------+
- _Hugo Pfoertner_, Mar 18 2019
		

References

  • Martin Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 231-233.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.

Crossrefs

Formula

a(n) = (1/8) * (Q(n) + P(n) + 2 * R(n)), where Q(n) = A000170(n) [all solutions], P(n) = A032522(n) [point symmetric solutions] and R(n) = A033148(n) [rotationally symmetric solutions].

Extensions

a(17) and a(18) found by Ulrich Schimke in Goettingen, Germany (UlrSchimke(AT)aol.com)
Formula and a(19) to a(23) added by Matthias Engelhardt in Nuremberg, Germany, Jan 23 2000
Terms (calculated from formula) added by Thomas B. Preußer, Dec 15 2008
a(26) (derived from formula after recent extension of A000170) added by Thomas B. Preußer, Jul 12 2009
a(27) (derived from formula after recent extension of A000170) added by Thomas B. Preußer, Sep 23 2016