cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002567 Number of nonisomorphic solutions to minimal independent dominating set on queens' graph Q(n).

This page as a plain text file.
%I A002567 M0389 N0147 #24 Oct 16 2023 23:53:35
%S A002567 1,1,1,2,2,17,1,91,16,1,1,105,4,55,1314,16,2,28
%N A002567 Number of nonisomorphic solutions to minimal independent dominating set on queens' graph Q(n).
%D A002567 W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
%D A002567 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002567 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002567 P. B. Gibbons and J. A. Webb, <a href="https://ajc.maths.uq.edu.au/pdf/15/ocr-ajc-v15-p145.pdf">Some new results for the queens domination problem</a>, Australasian Journal of Combinatorics 15 (1997), pp. 145-160.
%H A002567 Matthew D. Kearse and Peter B. Gibbons, <a href="http://ajc.maths.uq.edu.au/pdf/23/ocr-ajc-v23-p253.pdf">Computational Methods and New Results for Chessboard Problems</a>, Australasian Journal of Combinatorics 23 (2001), 253-284.
%H A002567 M. A. Sainte-Laguë, <a href="https://eudml.org/doc/192551">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
%H A002567 M. A. Sainte-Laguë, <a href="/A002560/a002560.pdf">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
%Y A002567 See A002568 for the number of distinct solutions.
%Y A002567 A075324 gives number of queens required.
%K A002567 nonn,more
%O A002567 1,4
%A A002567 _N. J. A. Sloane_
%E A002567 a(9) corrected by Peter Gibbons, May 30 2004