cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002573 Restricted partitions.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 12, 22, 39, 70, 126, 225, 404, 725, 1299, 2331, 4182, 7501, 13458, 24145, 43316, 77715, 139430, 250152, 448808, 805222, 1444677, 2591958, 4650342, 8343380, 14969239, 26856992, 48185362, 86451602, 155106844, 278284440, 499283177, 895787396, 1607174300, 2883507098
Offset: 1

Views

Author

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(8)=22 compositions 8=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1):
[ 1]  [ 2 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 2 ]
[ 3]  [ 2 1 1 1 2 1 ]
[ 4]  [ 2 1 1 2 1 1 ]
[ 5]  [ 2 1 1 2 2 ]
[ 6]  [ 2 1 2 1 1 1 ]
[ 7]  [ 2 1 2 1 2 ]
[ 8]  [ 2 1 2 2 1 ]
[ 9]  [ 2 1 2 3 ]
[10]  [ 2 2 1 1 1 1 ]
[11]  [ 2 2 1 1 2 ]
[12]  [ 2 2 1 2 1 ]
[13]  [ 2 2 2 1 1 ]
[14]  [ 2 2 2 2 ]
[15]  [ 2 2 3 1 ]
[16]  [ 2 2 4 ]
[17]  [ 2 3 1 1 1 ]
[18]  [ 2 3 1 2 ]
[19]  [ 2 3 2 1 ]
[20]  [ 2 3 3 ]
[21]  [ 2 4 1 1 ]
[22]  [ 2 4 2 ]
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A176431.

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(2,n), n=1..50) ];
  • Mathematica
    v[c_, d_] :=  v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; a[n_] := v[2, n]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Jan 30 2012, after Maple *)