cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002595 Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).

This page as a plain text file.
%I A002595 M4233 N1768 #47 Feb 16 2025 08:32:26
%S A002595 1,6,40,112,1152,2816,13312,10240,557056,1245184,5505024,12058624,
%T A002595 104857600,226492416,973078528,2080374784,23622320128,30064771072,
%U A002595 635655159808,446676598784,11269994184704,23639499997184,6597069766656
%N A002595 Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
%C A002595 arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., = x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... when reduced to lowest terms.
%C A002595 arccos(x) = Pi/2 - (x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ...).
%C A002595 arccsc(x) = 1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...
%C A002595 arcsec(x) = Pi/2 -(1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...)
%C A002595 arcsinh(x) = x-1/6*x^3+3/40*x^5-5/112*x^7+35/1152*x^9-63/2816*x^11+...
%C A002595 arccsc(x) = arcsin(1/x) and arcsec(x) = arccos(1/x): 1 < |x|
%C A002595 arccsch(x) = arcsinh(1/x) for 1 < |x|
%C A002595 Also denominator of (2n-1)!! / ((2n+1)*(2n)!!) (n=>0).
%D A002595 W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
%D A002595 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
%D A002595 H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
%D A002595 Focus, vol. 16, no. 5, page 32, Oct 1996.
%D A002595 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002595 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A002595 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, equation 31:6:1 at page 290.
%H A002595 T. D. Noe, <a href="/A002595/b002595.txt">Table of n, a(n) for n=0..200</a>
%H A002595 H. E. Salzer, <a href="http://dx.doi.org/10.1090/S0025-5718-1948-0023123-5">Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials</a>, Math. Comp., 3 (1948), 16-18.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseCosecant.html">Inverse Cosecant</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseCosine.html">Inverse Cosine</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseSecant.html">Inverse Secant</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseSine.html">Inverse Sine</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicCosecant.html">Inverse Hyperbolic Cosecant</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicSine.html">Inverse Hyperbolic Sine</a>.
%H A002595 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArchimedesSpiral.html">Archimedes' Spiral</a>.
%H A002595 Herbert S. Wilf, <a href="https://www2.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, Academic Press, NY, 1994. See p. 54.
%F A002595 a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - _Johannes W. Meijer_, Jul 06 2009
%t A002595 Denominator[Take[CoefficientList[Series[ArcSin[x],{x,0,50}],x],{2,-1,2}]] (* _Harvey P. Dale_, Aug 06 2012 *)
%o A002595 (PARI) a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))); \\ _Stefano Spezia_, Dec 31 2024
%Y A002595 A055786(n) / a(n) = A001147(n) / ( A000165(n) * (2*n+1))
%Y A002595 Cf. A162443 where BG1[ -3,n] = (-1)*A002595(n-1)/A055786(n-1) for n =>1. - _Johannes W. Meijer_, Jul 06 2009
%Y A002595 a(n) = 2*A143582(n+1) for n>=1. - _Filip Zaludek_, Oct 25 2016
%K A002595 nonn,frac,nice,easy
%O A002595 0,2
%A A002595 _N. J. A. Sloane_