cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002597 Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.

This page as a plain text file.
%I A002597 M2533 N1000 #46 Aug 28 2025 15:29:16
%S A002597 1,1,3,6,9,15,25,34,51,73,97,132,178,226,294,376,466,582,722,872,1062,
%T A002597 1282,1522,1812,2147,2507,2937,3422,3947,4557,5243,5978,6825,7763,
%U A002597 8771,9912,11172,12516,14028,15680,17444,19404,21540,23808,26316,29028,31908
%N A002597 Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.
%C A002597 Old name was: A generalized partition function.
%D A002597 Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.
%D A002597 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002597 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002597 Alois P. Heinz, <a href="/A002597/b002597.txt">Table of n, a(n) for n = 0..1000</a>
%H A002597 H. Gupta, <a href="/A002597/a002597.pdf">A generalization of the partition function</a>, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy]
%H A002597 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, 1, -4, -5, 3, 6, 3, -5, -4, 1, 2, 1, -1).
%F A002597 G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^3). - _Henry Bottomley_, Sep 17 2001
%F A002597 Euler transform of [1, 2, 3, 0, 0, 0, 0, 0, ...]. - _Thomas Wieder_, Mar 13 2005
%F A002597 a(n)=floor((160*(n+1)*(-1)^(floor(n/3+2/3)+n)+80*(n^2+15*n+24)*(-1)^(floor(n/3+1/3)+n)+80*(n+2)*(n+11)*(-1)^(floor(n/3)+n)+405*(n+1)*(-1)^n+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735))/25920+1/2). - _Tani Akinari_, Oct 12 2012
%p A002597 a:= proc(n) option remember;
%p A002597      `if`(n=0, 1, add(add(d *`if`(d<4, d, 0),
%p A002597       d=numtheory[divisors](j)) *a(n-j), j=1..n)/n)
%p A002597     end:
%p A002597 seq(a(n), n=0..50);  # _Alois P. Heinz_, Apr 21 2012
%t A002597 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*If[d<4, d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)
%t A002597 LinearRecurrence[{1,2,1,-4,-5,3,6,3,-5,-4,1,2,1,-1},{1,1,3,6,9,15,25,34,51,73,97,132,178,226},50] (* _Harvey P. Dale_, Aug 28 2025 *)
%o A002597 (PARI) a(n)=round((n\3+1)*((n\3+4)*[1,-1,0][1+n%3]/18-(n%3>1)/27)+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735+405*(-1)^n)/25920) \\ _Tani Akinari_, May 29 2014
%Y A002597 Cf. A064349.
%K A002597 nonn,changed
%O A002597 0,3
%A A002597 _N. J. A. Sloane_
%E A002597 More terms from _Henry Bottomley_, Sep 17 2001
%E A002597 Better name from _Joerg Arndt_, Oct 12 2012