This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002600 M4686 N2002 #27 Oct 17 2023 08:18:51 %S A002600 1,10,25,37,42,48,79,145,244,415,672,1100,1722,2727,4193,6428,9658, %T A002600 14478,21313,31304,45329,65311,93074,132026,185413,259242,359395, %U A002600 495839,679175,926064,1254360,1691753,2268267,3028345,4021954,5320139,7003154 %N A002600 A generalized partition function. %D A002600 Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238. %D A002600 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002600 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002600 Vincenzo Librandi, <a href="/A002600/b002600.txt">Table of n, a(n) for n = 1..1000</a> %H A002600 Hansraj Gupta, <a href="/A002597/a002597.pdf">A generalization of the partition function</a>, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy] %p A002600 J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(6, t)), x, 1+max(6, t)), x, max(6, t)): seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 20 2009 %t A002600 J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[6, t]], {x, 0, Max[6, t]}]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *) %K A002600 nonn %O A002600 1,2 %A A002600 _N. J. A. Sloane_ %E A002600 More terms from _Alois P. Heinz_, Jul 20 2009