This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A002601 M4694 N2004 #26 Oct 17 2023 08:18:55 %S A002601 1,10,34,58,73,79,86,152,265,457,763,1268,2058,3308,5236,8220,12731, %T A002601 19546,29685,44702,66714,98806,145154,211756,306667,441249,630771, %U A002601 896344,1266146,1778692,2485086,3454206,4777165,6575350,9008159 %N A002601 A generalized partition function. %D A002601 Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238. %D A002601 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002601 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002601 Alois P. Heinz, <a href="/A002601/b002601.txt">Table of n, a(n) for n = 1..1000</a> %H A002601 Hansraj Gupta, <a href="/A002597/a002597.pdf">A generalization of the partition function</a>, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy] %p A002601 J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(7, t)), x, 1+max(7, t)), x, max(7, t)): seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 20 2009 %t A002601 J[m_] := Product [(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[7, t]], {x, 0, Max[7, t]}]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 17 2014, after _Alois P. Heinz_ *) %K A002601 nonn %O A002601 1,2 %A A002601 _N. J. A. Sloane_ %E A002601 More terms from _Alois P. Heinz_, Jul 20 2009